MADHU Guest Faculty, Department of library & Information Science Patna University. Email Id – <u>madhu.gfatm@gmail.com</u> Mobile No. - 9308765287

MLIS Semester II (Paper – 1) Research Methods and Statistical Techniques Topic – Data Representation e-content

DATA REPRESENTATION

Once data collection is completed, our efforts should be geared towards bringing these raw data into a presentable form of a table or a chart. The objective of classification of data is to make the data simple, concise, meaningful and helpful in further analysis.

There are three methods of presenting data :-

- Textual Presentation
- Tabular Presentation
- Graphical Presentation

Tabular Presentation

Tabulation of data pertaining to different types of variables and later on we will move on to graphical presentation. The first step in the analysis and interpretation of data is its classification and tabulation. The process of arranging data into groups according to their common characteristics is known as its classification. On the other hand tabulation implies a systematic presentation of data in rows and columns according to some salient features or characteristics.

Cumulative Frequency (monthly expenditure in Rupees)

Class Interval	Frequency	Cumulative Frequency
Less than 200	21	21
Less than 300	32	53
Less than 400	49	102
Less than 500	33	135
Less than 600	23	158
Less than 700	12	170
Less than 800	5	175

Graphical Presentation

- Line Graph
- Histogram
- Frequency Polygon
- Frequency Curve
- Bar Diagrams
- Pie Chart

Line Graph

Line graph is appropriate when we need to present the movement or variation in a variable. It is quite simple to draw and indicates the increase or decrease in a variable over time or across observations. Line graphs can be used for discrete data. Recall that in the case of continuous data we assumed that the average value of each class is its mid-point. Thus we can plot the frequencies for each class against its midpoint and join these points to obtain a line graph. Example - number of books issued in a library (month- wise for the year 2019)

Number of Books Issued in a Library

Months	No. of Visitors	Months	No. of Visitors
January	76	July	105
February	85	August	108
March	86	September	110
April	90	October	115
May	82	November	118
June	98	December	106

Example - number of books issued in a library (monthwise for the year 2019)

Number of Books Issued in a Library

Histogram

Histogram is a rectangular diagram where the area of each rectangle is proportional to the frequency of the respective class. Remember that histogram is appropriate for continuous data arranged into class intervals. It is not used for discrete data. The steps followed are:

- On a graph paper we mark class intervals such as 100-200, 200-300, etc. on the horizontal axis.
- Similarly we mark frequencies on the vertical axis.
- We draw rectangles .
- When class intervals are equal the height of rectangles are equal to the frequency of classes.
- When class intervals are not equal the frequencies are adjusted so that area of rectangle is proportional to class frequency. For example, if the interval of one class is double that of other classes, then we need to divide the frequency of the former by two.

Monthly expenditure on purchase of books (in Rupees)			
Class Interval	Frequency	Relative Frequency	
100-200	21	12.00	
200-300	32	18.29	
300-400	49	28.00	
400-500	33	18.86	
500-600	23	13.14	
600-700	12	6.86	
700-800	5	2.86	

Bar Diagrams

A bar is defined as a thick line, often made thicker to attract the attention of a reader. The height of the bar highlights the value of the variable. Remember that width of the bars does not mean anything. Moreover, bars are separated from each other with equal gaps. Thus it is different from histogram, which is more appropriate for quantitative data and area of the bars is important. Finally, in histogram the bars are always vertically placed whereas in bar diagram they can be placed both vertically as well as horizontally.

Simple Bars

Number of students in a college

Stream	Number of students	
Arts	800	
Science	460	
Commerce	520	

Component Bar Diagrams

Number of students in a college

Stream	Boys	Girls
Arts	400	400
Science	260	200
Commerce	350	170

Number of students in a college

Multiple Bar Diagrams

Number of Girls Student during past three years

Stream	2017	2018	2019
Arts	130	135	125
Science	45	57	65
Commerce	20	26	30

Number of Girls Student during past three years

Pie Chart

Pie chart is widely used to show share of different components in a variable. For example, expenditure of a library on different heads can be shown in the form a pie chart. Suppose for the financial year 2017-18 you have budget data of a library a circle has 360°. This area is divided into different components according respective share. Heads of Expenditure in a Library (in Rs. Thousand)

Heads of Expenditure	Budget	Ratio of the component	Degrees
	246		
Salary	246	0.24	86.30
Purchase of books	325	0.32	114.0 ⁰
Purchase of journals	175	0.17	61.4 ⁰
Purchase of furniture	200	0.19	70.2 ⁰
Maintenance	50	0.05	17.5 ⁰
Contingency	30	0.03	10.5 ⁰
Total	1026	1.00	360 ⁰

