M.A. Semester II (2019-2021)

CC-9 (Practical)

By- Dr. Anuradha Sahay
Prof and Head, PG Department of Geography

MERCATOR'S PROJECTION

(Alternative Method)

Mercator's projection is a cylindrical group or orthomorphic projection. It needs the following calculation for construction. The Mercator projection maps all lines with constant bearing to straight lines. The space between meridians are equal parallel lines. The latitude parallels are straight lines that are farther and farther apart as their distance from the Equator increases.
i. The distance between two longitude on the equator $(\mathrm{x})=\mathrm{Rr}$
$\mathrm{x}=$ Distance between the meridians
$\mathrm{R}=$ Radius of the earth
$\mathrm{R}=$ Interval of the meridians
ii. The distance between two latitudes on the equator
$\mathrm{Y}=\mathrm{R} 2.3026 \log 10 \tan \left(45^{\circ} * 10 / 2\right)$
$\mathrm{y}=$ Distance of two parallels
$\mathrm{R}=$ Reduced radius of the Earth
($\log 10$ value is fixed and is written as 2.3026)

Question: Construct the map of the world on Mercator's Projection at interval of 10° and R.R. is 1.5 ".

Answer:
R.R-1.5 in.

Interval-10

Length of the equator $-2 \pi r$
$=2 \times 3.14 \times 1.5$ "
$=9.428^{\prime \prime}$
Distance of meridian along the equator $=\mathrm{R} \lambda$

$$
=1.5 " \times 10^{\circ}
$$

$=1.5 " \times 0.17453$
$=0.2618$ "

Distance of parallels from equator -
For $10^{\circ}=1.5^{\prime \prime} \times 2.3026 \times \log \tan \left(45^{\circ}+10 / 2\right)$
$=1.5 \times 2.3026 \log \tan 50^{\circ}$
$=0.2632^{\prime \prime}$

For $20^{\circ}=1.5^{"} \times 2.3026 \times \log \tan \left(45^{\circ}+20 / 2\right)$
$=3.4539 \times 0.1577$
$=0.5346^{\prime \prime}$

For $30^{\circ}=1.5^{\prime \prime} \times 2.3026 \times \log \tan \left(45^{\circ}+30 / 2\right)$
$=1.5 " \times 2.3026 \times 0.23856$
$=0.8240$ "

```
For 40' = 1.5" }\times2.3026\times\operatorname{log}\operatorname{tan}(4\mp@subsup{5}{}{\circ}+40/2
=1.5" }\times2.3026\times0.331
=1.144"
For 50' = 1.5" }\times2.3026\times\operatorname{log}\operatorname{tan}(4\mp@subsup{5}{}{\circ}+50/2
=3.4539 < 0.43893
=1.5160''
For 60' = 1.5" }\times2.3026\times\operatorname{log}\operatorname{tan}(4\mp@subsup{5}{}{\circ}+60/2
=3.4539 < 0.57195
=1.975"
```

For $70^{\circ}=3.4539 \times \log \tan \left(45^{\circ}+70 / 2\right)$
$=3.4539 \times 0.7538$
$=2.6013^{\prime \prime}$

For $80^{\circ}=3.4539 \times \log \tan \left(45^{\circ}+80 / 2\right)$
$=3.4539 \times 1.05805$
$=3.654^{\prime \prime}$

Latitudes	Distance from Equator
0°	$0.087 \times \mathrm{R}$
10°	$0.175 \times \mathrm{R}$
15°	$0.265 \times \mathrm{R}$
20°	$0.356 \times \mathrm{R}$
25°	$0.450 \times \mathrm{R}$
30°	$0.549 \times \mathrm{R}$
35°	$0.652 \times \mathrm{R}$
40°	$0.763 \times \mathrm{R}$
45°	$0.880 \times \mathrm{R}$
50°	$1.011 \times \mathrm{R}$
55°	$1.153 \times \mathrm{R}$
60°	$1.317 \times \mathrm{R}$
65°	$1.505 \times \mathrm{R}$
70°	$1.736 \times \mathrm{R}$
75°	$2.435 \times \mathrm{R}$
80°	$3.132 \times \mathrm{R}$

