Department of Zoology Patna University

Dr. Anupma Kumari Associate Professor Department of Zoology

Topic: Exponential population growth CC V- Environmental Science

POPULATION GROWTH

- Population growth refers to the changes in the size of the population i.e. how the number of individuals in a population increases or decreases with time.
- The density of a population in a given habitat during a given period fluctuates due to change in four basic processes.
 - Natality
 - Mortality
 - Immigration
 - Emigration

- <u>Natality-</u> It refers to the birth of individual in a population. Natality rate(or birth rate) is the number of individuals produced or born in a given period per unit time.
- <u>Mortality-</u> It refers to the death of individuals in a population. Mortality rate(or death rate) is the number of individuals died during a given period.
- <u>Immigration</u>- Number of individuals of the same species that have come into the habitat from elsewhere during a time period under consideration.
- <u>Emigration</u>- Number of individuals who left the habitat and gone elsewhere during a time period under consideration.

So, Population density at time 't' -

Based on the above four parameters, population can be divided into two parts -

POPULATION GROWTH MODELS

• A population model is a type of mathematical model that is applied to the study of population dynamics.

- Population growth models.
 - Exponential Growth Model
 - Logistic Growth Model

Exponential Growth

 Thomas Malthus (1798) wrote 'An Essay On The Principle Of Population' in which he wrote population growth occurs exponentially. During exponential growth the number increases in the geometric progression 2⁰, 2¹...2ⁿ.

He examined the relationship between population growth and resources.

Conditions for Exponential Growth

- Resources should be unlimited
- No immigration and emigration
- No mortality
- Then birth rate alone will account for the change in population number. Under this condition population growth will stimulate compound interest, a continued increase for exponential growth.

Mathematical Expression

• In an unlimited closed population the exponential form may be represented by -

$$\implies \frac{dN}{dt} = (b-d)N \quad Or \quad \frac{dN}{dt} = rN \quad (i)$$

- The equation shows that the rate of increase or decrease of the population is directly proportional to the population size and the growth rate.
- The most useful equation for calculating the exponential growth is the integrated form and the curve is 'J-Shaped curve' and depends upon the value of 'r'.

Integrating on both sides of equation (ii)

$$\Rightarrow \int \frac{dN}{N} = \int r dt$$

$$\Rightarrow c_1 + lnN = rt + c_2 \qquad Since \left(\int \frac{dx}{x} = lnx + c \quad [Integration Formula] \\ where c_1 and c_2 are constants for integration \right)$$

$$\Rightarrow lnN = rt + (c_2 - c_1)$$

$$\Rightarrow lnN = rt + c \qquad (Combining the constants of integration c_1 and c_2 into a single constant 'c')$$

Now, each side of the equation is raised to the power of 'e' to get rid of the logarithm.

$$\Rightarrow e^{\ln N} = e^{rt+c} \qquad \begin{pmatrix} e = natural \ logarithm \ base. \\ Also \ known \ as'Euler's \ Number' \end{pmatrix}$$
$$\Rightarrow N = e^{c} \times e^{rt} - (iii)$$

Now at t=0 (the initial time we observe the population)

Sub

At

$$\implies N_0 = e^c \times e^{r \times 0}$$

$$N_0 = e^c \times 1$$

$$N_0 = e^c \qquad (iv) \qquad (e^c \text{ is the initial population size})$$
ostituting the value of e^c in the equation (iii)
$$t = 0, N = N_0 \qquad At \ t = t, N = N_t$$

 $\Rightarrow N_{t} = e^{c} \times e^{rt}$ $\Rightarrow N_{t} = N_{0} \times e^{rt} (Integral Equation for the exponential growth) of the population)$

Equations for Exponential Growth

- When resources (food and space) in a habitat are unlimited, all the members of a species have the ability to grow exponentially.
- The population size that increases exponentially at a constant rate, results in a J-shaped growth curve when population size (N) is plotted over time(t).

- The growth curve is J-shaped and depends upon the value of 'r'
 - If r>0 (means population increases exponentially)
 - r<0 (exponential decline in the population)
 - r=0 (No change in the population size)

Example of exponential growth

- There really are no example of positive exponential growth as such in the physical universe. Things grows exponentially for a while but they always hit some limit.
- One such example of exponential growth is observed in bacteria. It takes bacteria roughly an hour to reproduce through prokaryotic fission.
- A population cannot grow exponentially forever. Over time it will exceed its carrying capacity.

THANKS