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Lotka-Volterra model
Lotka-Volterra model is an interspecific competition theory, named after
the two mathematician, the American Alfred Lotka and the Italian
Vittora Volterra.
In 1920’s they independently derived the mathematical expression to
describe the relationship between two different species using the same
resource, by modifying the logistic equation with addition of the term
“competition coefficient” to take into account of competition effect of
one species on the population growth of other species.
For two species ( species 1 and species 2 ) with population N1 and N2,
the competition coefficient is expressed as α N2 and βN1 respectively.
Hence, Lotka-Volterra model is the extension of the sigmoidal logistic
growth model.



Derivation of Equation

The logistic equation for population growth of single species coexist
Independently is

Now, modifying the logistic equation with addition of competition 
Coefficient αN2 and βN1, the change in the population size for two
Competing species can be represented as

Where,
α = competition coefficient as effect of species 2 on species 1



β = competition coefficient as effect of species 1 on species 2
r1 & r2= intrinsic growth rate of species 1 and species 2
K1 & K2= carrying capacity of species 1 and species 2

ASSUMPTIONS

Some major outcomes that lie behind the Lotka-Volterra model are
1. The environment is homogeneous and stable, without any

fluctuations.
2. Migration is unimportant
3. The effect of competition is instantaneous
4. Coexistence require a stable equilibrium
5. Competition is a only important biological interaction.



Joint Dynamics

Based on the assumptions, the modified logistic equation (I& II) can be used to
describe the joint dynamics as the ‘ combined population effect’.

In absence of any interspecific competition either α or N2=0 in equation (1)
and β or N1=0 in equation (II), population of each species grows logistically in
equlibrium at ‘K’ (carrying capacity) and population growth (dN1/dt or dN2/dt)
approaches zero.

i.e. N1 = K1 & dN1/dt = 0
N2 = K2 & dN2/dt = 0

Inherent in the logistic equation is the inhibitory effect of each individual on its
own species’ population growth. This effect is represented by 1/ K1 for species
1 and 1/K2 for species 2.



In the presence of competition, the picture changes.
In competing populations, the inhibitory effect of each N2 individual on
N1 is α / K1. Similarly, the inhibitory effect of each N1 individual on the
population growth of species 2 is β / K2.
For example, the carrying capacity for species 1 is K1 and as N1
approaches K1 , the population growth (dN1 / dt) approaches zero.
However, species 2 is also vying for the limited resource that
determines K1 , so we must consider the impact of species 2. Because if
α is the per capita effect of species 2 on species 1, the total effect of
species 2 on species 1 is αN2. so we must consider the effects of both
species in calculating population growth. As the combined population
effect (N1 + αN2 ) approaches K1, the growth rate of species 1 will
approach zero. The greater the density of the competing speciec(N2),
the greater the reduction in the growth rate of species 1(dN1 / dt).
The outcome of competition depends upon the relative values of K1,
K2,α and β.



So, considering the effect of both species the combined population
effect for species 1 is represented as

N1 + αN2 = K1 & dN1/dt = 0

Similarly, the combined population effect for species 2 is represented as

N2 + βN1 = K2 & dN2/dt = 0

With the help of graphs, we can better understand the equations.
In each case the ordinate will represent the population size of species 1
and the abscissa the population size of species 2.



Two lines are plotted on each graph: one representing each of the two species.
The diagonal line for species 1 represents the combined population densities of
species 1 and 2 that equal K1 and therefore dN1/dt=0.
The diagonal line for species 2 represents the combined population densities of
species 1 and 2 that equal K2 and therefore dN2/dt=0.
For any point on the species 1 line, N1 + αN2 = K1 . When N1= K1, then N2
must be zero. Because α is the per capita effect of species 2 on species 1, the
population density of species 2 that is equivalent to the carrying capacity of
species 1 (αN2 = K1 ) will be N2 = K1/α. Therefore, when N2 = K1/α then N1
must be equal to zero. . If N2 = K1 / α then N1 can never increase.

For any point on the species 2 line, N2 + βN1 = K2 . When N2= K2, then N1
must be zero. Because β is the per capita effect of species 1 on species 2, the
population density of species 1 that is equivalent to the carrying capacity of
species (β N2 = K2 ) will be N1 = K2/ β. Therefore, when N1 = K2/ β then N2
must be equal to zero. If N1 = K2 / β thenN2 can never increase.



JOINT DYNAMICS IN TERMS OF ZERO ISOCLINES & PARAMETERS

“Zero-isoclines” are the points on a diagonal line showing zero
Population growth (dN/dt=0) when a graph of N2 in y axis against
N1 in x axis is plotted

1.dN1/dt=0
when N1=K1 (if N2=0)

N2=K1/α ( if N1=0

ii. dN1/dt >0
When N1+ α N2 < K1
[ Below zero-isocline represented by
in increasing value of N1
ii. dN1/dt <0
When N1+ α N2 >K1
[ Above zero-isocline represented by
in decreasing value of N1

Species- 1



1.dN2 /dt=0
when N2=K2 (if N1=0)

N1=K2/β ( if N2=0)

ii. dN2/dt >0
When N2+ βN1 < K2
[ Below zero-isocline represented by
in increasing value of N2

ii. dN2 /dt <0
When N2+ β N2 >K2
[ Above zero-isocline represented by
in decreasing value of N2                                        

Species -2





Figure c. The isocline of species 1
fall inside the isocline of

species 2. Species 2
always wins, leading to 

the extinction of species 1 

In figure c, the isocline of
species 1 is parallel to, and
lies inside, the Isocline of
species 2. In this case, even
when the population of

species 1is at its carrying
capacity (K1 ), its density
cannot stop the population
of Species 2 from increasing
( K1 < K2 /β). As species
2 continues to increase,
Species 1 eventually extinct.



In figure d, the isocline of
species 1 is parallel to, and
lies outside, the Isocline of

species 2. In this case,even
when the population of

species 2 is at its carrying
capacity (K2 ), its density
cannot stop the population
of Species 1 from increasing
( K2 < K1 /α). As species

1 continues to increase,
Species 2 eventually extinct.

Figure d. The isocline of species 1
fall outside the isocline of

species 2. Species 1
always wins, leading to 

the extinction of species 2 



In the third outcome the diagonal equilibrium
lines cross each other. The equilibrium point is
resenting at their crossing, but it is unstable.
The vectors are directed away from the equilibrium
point, indicating that the true equilibrium points are
K1 and K2. In this situation equilibrium between
Competing species is unstable and either of the two
Species can win. Above the line K2, K2/β species
2 is unable to increase; and above K1, K1/α species
1is unable to increase. If the mix of the species is such
that the point N1, N2 falls within the triangle K2,
E/ K1/α, species 1 is above its carrying capacity and
species 2 is not. Species 2 will continue to increase and
species 1 will decrease until it is gone. The reverse
situation occurs in triangle K1, E/ K2/β. What happens
in parts of the diagram outside the triangle depends upon
whether the starting value of N1 is larger or smaller than
that of N2.

In figure e. each species
inhibits the growth of the
other species more than
it inhibits its own growth.
Which species win often 
depends upon the initial
proportion of the two species 



Finally the two species coexist
with their populations in equilibrium.
As species 1 increases, species 2 may
decrease and vice versa. Each species
inhibits the growth of its own
population more than that of the other

by intraspecific competition. In this
case, K1 is less than K2/β, the
population of species 1 can never
reach a density sufficient to eliminate
species 2. Likewise K2 is less than

K1/α, the population of species
2 can never reach a density
sufficient to eliminate species 1.

f. Coexistence
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