Life Table: Meaning, Types and Importance

Dr. Kumar Satyendra Yadav, Assistant Professor, Statistics, Dept.. Patna University, Patna

Meaning of Life Table:

Life table is a mathematical sample which gives a view of death in a country and is the basis for measuring the average life expectancy in a society. It tells about the probability of a person dying at a certain age, or living up to a definite age.

According to Bogue, "The life table is a mathematical model that portrays mortality condition at a particular time among a population and provides a basis for measuring longevity. It is based on age specific mortality rates observed for a population for a particular year."

Types of Life Tables:

Life tables are of two types:

Cohort or Generation Life Table, and Period Life Table. The Cohort or Generation Life Table "summarises the age specific mortality experience of a given birth cohort (a group of persons all born at the same time) for its life and thus extends over many calender years." On the other hand, the "Period Life Table summarises the age specific mortality conditions pertaining to a given or other short time period."

Assumptions of Life Table:

A life table is based on the following assumptions:

- 1. A hypothetical cohort of life table usually comprises of 1,000 or 10,000 or 1,00,000 births.
- 2. The deaths are equally distributed throughout the year.
- 3. The cohort of people diminish gradually by death only.
- 4. The cohort is closed to the in-migration and out-migration.
- 5. The death rate is related to a pre-determined age specific death rate.
- 6. The cohort of persons die at a fixed age which does not change.
- 7. There is no change in death rates overtime.
- 8. The cohort of life tables are generally constructed separately for males and females.

Methods of Constructing Life Table:

Life tables are constructed on the basis of a single cross-sectional time data for a generation. There is also a longitudinal life table method which takes a real cohort of persons that start life at a specific age interval and follow it throughout life until they die.

Further, a complete life table may be constructed on the basis of single years of ages. An abridged life table can also be constructed wherein ages are grouped in 5 or 10 years of interval, taking the initial year as 0-1.

TABLE 3.4 Hypothetical Complete Life Table for India (1971–80)												
Age x to x+n	dx	fx = fx - dx $(3-2)$	qx dx/fx (2/3)	рх 1 – qх (1–4)	Lx (fx0 + fx1)/2	Tx $Tx1 =$ $T \times x0 - L \times x0$	ex Tx/Fx					
1	2	3 8	tent4 a	5	6	7	8					
0.	13000	100000	0.13000	0.87000	93500	4930250	49.3					
1.	1300	87000	0.01494	0.98506	86350	4836750	55.6					
2.	1200	85700	0.01400	0.98600	85100	4750400	55.4					
3.	100	84500	0.00118	0.99882	84450	4665300	55.2					
4.	800	84400	0.00948	0.99052	84000	4580850	54.3					
5.	500	83600	0.00598	0.99402	83350	4496850	53.8					
6.	300	83100	0.00361	0.99639	82950	4413500	53.1					
7.	200	82800	0.00242	0.99758	82700	4330550	52.3					
8.	100	82600	0.00121	0.99879	82550	4247850	51.4					
9.	70	82500	0.00085	0.99915	82465	4165300	50.5					
10.	65	82430	0.00079	0.99921	82398	4082835	49.5					
11.	60	82365	0.00073	0.99927	82335	4000438	48.6					
12	80	82305	0.00097	0.99903	82265	3918103	47.6					
13.	100	82225	0.00122	0.99878	82175	3835838	46.7					
14.	200	82125	0.00244	0.99756	82025	3753663	45.7					
15.	210	81925	0.00256	0.99744	81820	3671638	44.8					
16.	215	81715	0.00263	0.99737	81608	3589818	43.9					
17.	220	81500	0.00270	0.99730	81390	3508210	43.0					
18.	225	81280	0.00277	0.99723	81168	3426820	42.2					
19.	230	81055	0.00284	0.99716	80940	3345653	41.3					
20.	225	80825	0.00278	0.99722	80713	3264713	40.4					
21.	230	80600	0.00285	0.99715	80485	3184000	39.5					
22.	235	80370	0.00292	0.99708	80253	3103515	38.6					
23.	240	80135	0.00299	0.99701	80015	3023263	37.7					
24.	245	79895	0.00307	0.99693	79773	2943248	36.8					
25.	260	79650	0.00326	0.99674	79520	2863475	36.0					
26.	275	79390	0.00346	0.99654	79253	2783955	35.1					
27.	285	79115	0.00360	0.99640	78973	2704703	34.2					
28.	295	78830	0.00374	0.99626	78683	2625730	33.3					
29.	320	78535	0.00407	0.99593	78375	2547048	32.4					
30.	350	78215	0.00447	0.99553	78040	2468673	31.6					
31.	400	77865	0.00514	0.99486	77665	2390633	30.7					

32.	450	77465	0.00581	0.99419	77240	2312968	29.9
33.	550	77015	0.00714	0.99286	76740	2235728	29.0
34.	600	76465	0.00785	0.99215	76165	2158988	28.2
35.	700	75865	0.00923	0.99077	75515	2082823	27.5
36.	800	75165	0.01064	0.98936	74765	2007308	26.7
37.	900	74365	C.01210	0.98790	73915	1932543	26.0
38.	1000	73465	0.01361	0.98639	72965	1858628	25.3
39.	1050	72465	0.01449	0.98551	71940	1785663	24.6
40.	1150	71415	0.01610	0.98390	70840	1713723	24.0
41.	1200	70265	0.01708	0.98292	69665	1642883	23.4
42.	1300	69065	0.01882	0.98118	68415	1573218	22.8
43.	1325	67765	0.01955	0.98045	67103	1504803	22.2
44.	1375	66440	0.02070	0.97930	65753	1437700	21.6
45.	1400	65065	0.02152	0.97848	64365	1371948	21.1
46.	1450	63665	0.02278	0.97722	62940	1307583	20.5
47.	1475	62215	0.02371	0.97629	61478	1244643	20.0
48.	1500	60740	0.02470	0.97530	59990	1183165	19.5
49.	1525	59240	0.02574	0.97426	58478	1123175	19.0
50.	1550	57715	0.02686	0.97314	56940	1064698	18.4
51.	1600	56165	0.02849	0.97151	55365	1007758	17.9
52.	1625	54565	0.02978	0.97022	53753	952393	17.5
53.	1650	52940	0.03117	0.96883	52115	898640	17.0
54.	1675	51290	0.03266	0.96734	50453	846525	16.5
55.	1700	49615	0.03426	0.96574	48765	796073	16.0
56.	1725	47915	0.03600	0.96400	47053	747308	15.6
57.	1750	46190	0.03789	0.96211	45315	700255	15.2
58.	1755	44440	0.03949	0.96051	43563	654940	14.7
59.	1760	42685	0.04123	0.95877	41805	611378	14.3
60.	1765	40925	0.04313	0.95687	40043	569573	13.9
61.	1760	39160	0.04494	0.95506	38280	529530	13.5
62.	1750	37400	0.04679	0.95321	36525	491250	13.1
63.	1725	35650	0.04839	0.95161	34788	454725	12.8
64.	1700	33925	0.05011	0.94989	33075	419938	12.4
65.	1675	32225	0.05198	0.94802	31388	386863	12.0
66.	1650	30550	0.05401	0.94599	29725	355475	11.6
67.	1600	28900	0.05536	0.94464	28100	325750	11.3
68.	1575	27300	0.05769	0.94231	26513	297650	10.9
69.	1550	25725	0.06025	0.93975	24950	271138	10.5
70.	1500	24175	0.06205	0.93795	23425	246188	10.2
71.	1475	22675	0.06505	0.93495	21938	222763	9.8
72.	1425	21200	0.06722	0.93278	20488	200825	9.5
73.	1375	19775	0.06953	0.93047	19088	180338	9.1
74.	1350	18400	0.07337	0.92663	17725	161250	8.8

The above life table provides the column wise information which is generally provided and followed by all life tables.

Col. 1.x = Specific Age

If the age at birth is x then the age at one year is x + 1. Similarly the age at 15 years is x + 15.

Col. 2. dx = Number of deaths, at any particular age. i.e., at the age x, 13000 deaths occur out of 1,00,000 births, then at age x + 1 : 87,000 persons will be alive. In this age, if 1300 deaths occur then at age x + 2 : 85700 persons will be alive.

Col. 3. fx = The number of persons surviving at age x to x + n i.e., at the age x + 1 = 1,00,000-13,000 = 87,000

Col. 4. qx = Probability of death per person in the specific age i.e., total deaths occurred. (Out of 1,00,000 = 13,000)

Probability = $13,000 \div 1,00,000 = 0.13$

Similarly, at the age x + 1, 1300 persons died out of 87,000 live population then

Probability = $1300 \div 87,000 = 0.01494$.

Col. 5. Px = 1 - Probability of surviving per individual person or 1 - qx, i.e.;

At age x, 1 - .13000 = .87000 and at age x + 1, 1 - .01494 = .98506.

Col. 6. Lx = Number of years lived by the cohort in the age x to x + n or

fx of any two age groups $\div 2$

Suppose,

fx- 15 = 81925 [col.: 3, row 15]

fx- 16 =81715 [col.: 3, row 16]

 $Lx = 163640 \div 2 = 81820$

Col. 7. Tx – Total number of years lived by the cohort after exact age x.

This can be found out from the reverse side of life table, i.e.,

At the age of 94 Lx = 525 and

at age 93 Lx = 925

then at age x + 93, total number of years lived by

Cohort = 525 + 925 = 1450 and at age x + 92,

it will be 525 + 925 + 1400 = 2850.

Col. 8. Ex = T.v \div Fx. This gives average life expectancy.

In short, the life table is based on the age of death period of a particular population. By studying this table, we can show the probability of death of any person of any particular age group. It is to be noted that every person of a particular age group does not die according to the estimate of the life table. The life table only shows a trend.

Importance of Life Table:

Life tables have been constructed by Graunt, Reed and Merrell, Keyfitz, Greville and other demographers for estimating population trends regarding death rates, average expectation of life, migration rates, etc.

We detail below the uses of life tables:

1. Life table is used to project future population on the basis of the present death rate.

2. It helps in determining the average expectation of life based on age specific death rates.

3. The method of constructing a life table can be followed to estimate the cause of specific death rates, male and female death rates, etc.

4. The survival rates in a life table can be used to calculate the net migration rate on the basis of age distribution at 5 or 10 year interval.

5. Life tables can be used to compare population trends at national and international levels.

6. By constructing a life table based on the age at marriage, marriage patterns and changes in them can be estimated.

7. Instead of a single life table, multiple decrement life tables relating to cause specific death rate, male and female death rates, etc. can be constructed for analysing socio-economic data in a country.

8. Life tables are particularly used for formulating family planning programmes relating to infant mortality, maternal deaths, health programmes, etc. They can also be used for evaluating family planning programmes.

9. Now a days, life tables are used by life insurance companies in order to estimate the average life expectancy of persons, separately for males and females. They help in determining the amount of premium to be paid by a person falling in a specific age group.

Besides, if an insured person dies before the policy matures, the life table provides economic support to the insurance company without facing financial loss and it is able to give the insured amount to the legal heirs of the deceased.