Compound Distribution

Compound Distribution

Suppose $F_{1}(\theta)$ be a probability distribution. Let the parameter θ of this distribution be regarded as a random variable having probability distribution $F_{2}(\alpha)$. The compounding of $F_{1}(\theta) \& F_{2}(\alpha)$ is symbolically expressed as:

$$
F_{1}(\theta) \triangle_{\theta} F_{2}(\alpha)
$$

It is known as compound F_{1} distribution, F_{2} known as the compounding distribution.

Ex Find Poisson $(\theta) \triangle_{\theta} \operatorname{Gamma}(a, b)$
Sol. We have to find compound distribution if F_{1} is Poisson distribution with parameter θ and θ is follow Gamma distribution with parameter (a, b)

$$
\begin{aligned}
& \operatorname{Gamma}(a, b)=\frac{a^{b}}{\Gamma(b)} x^{b-1} e^{-a x}, \quad x>0, a, b>0 \\
& \operatorname{Poisson}(\theta)=\frac{e^{-\theta} \theta^{m}}{m!}, \quad m=0,1,2 \ldots
\end{aligned}
$$

Here the limit of θ is 0 to ∞.

So, compound distribution is obtained as

$$
\int_{0}^{\infty} \frac{e^{-\theta} \theta^{m}}{m!} \frac{a^{b}}{\Gamma(b)} \theta^{b-1} e^{-a \theta} d \theta=\frac{a^{b}}{m!\Gamma(b)} \int_{0}^{\infty} \theta^{m+b-1} e^{-(a+1) \theta} d \theta
$$

Using Gamma Function, Solve above integration

$$
=\frac{a^{b}}{m!\Gamma(b)} \frac{\Gamma(m+b)}{(a+1)^{m+b}}=\frac{(m+b-1)!}{m!(b-1)!}\left(\frac{a}{a+1}\right)^{b}\left(\frac{1}{a+1}\right)^{m}
$$

$$
\text { Put } \frac{a}{a+1}=p \text { then } \frac{1}{a+1}=1-p=q
$$

So we can say that

$$
f(\theta)={ }^{m+b-1} C_{m} p^{b} q^{m} ; \quad m=0,1,2, \ldots .
$$

This is the pmf of Negative Binomial Distribution so we can say that the compound distribution is Negative Binomial Distribution.

Ex Find $\operatorname{Binomial}(n, p) \triangle_{p} \operatorname{Beta}(a, b)$
Sol. We have to find compound distribution if F_{1} is Binomial distribution with parameter n and p. If p is follow Beta distribution with parameter (a, b)

$$
\begin{aligned}
& \operatorname{Binomial}(n p)={ }^{n} C_{x} p^{x} q^{n-x}, \quad n=0,1,2 \ldots x \\
& \operatorname{Beta}(a, b)=\frac{1}{\beta(a, b)} p^{a-1}(1-p)^{b-1}, \quad 0<p<1, a, b>0
\end{aligned}
$$

Here the limit of p is $0<p<1$.
So, compound distribution is obtained as

$$
\int_{0}^{1}{ }^{n} C_{x} p^{x} q^{n-x} \frac{1}{\beta(a, b)} p^{a-1}(1-p)^{b-1} d p={ }^{n} C_{x} \frac{1}{\beta(a, b)} \int_{0}^{1} p^{x+a-1}(1-p)^{n-x+b-1} d p
$$

Using Beta Function, Solve above integration

$$
\begin{aligned}
& ={ }^{n} C_{x} \frac{1}{\beta(a, b)} \beta(x+a, n-x+b)={ }^{n} C_{x} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(a+x) \Gamma(n+b-x)}{\Gamma(n+a+b)} \\
& ={ }^{n} C_{x} \frac{a(a+1)(a+2), \ldots .,(a+x-1) b(b+1) \ldots .(b+n-x-1)}{(a+b)(a+b+1) \ldots(a+b+n-1)}
\end{aligned}
$$

So we can say that

$$
f(p)={ }^{n} C_{x} \frac{a(a+1)(a+2), \ldots \ldots,(a+x-1) b(b+1) \ldots .(b+n-x-1)}{(a+b)(a+b+1) \ldots(a+b+n-1)} ; \quad x=0,1,2, \ldots
$$

This is the pmf of Polya- Eggenberger (Beta Binomial) Distribution so we can say that the compound distribution is Polya- Eggenberger (Beta Binomial) Distribution.

Ex Find $\operatorname{Binomial}(n, p) \triangle_{p} \operatorname{Beta}(a, b)$
Sol. We have to find compound distribution if F_{1} is Binomial distribution with parameter n and p. If p is follow Beta distribution with parameter (a, b)

$$
\operatorname{Binomial}(n p)={ }^{n} C_{x} p^{x} q^{n-x}, \quad n=0,1,2 \ldots x
$$

$$
\operatorname{Beta}(a, b)=\frac{1}{\beta(a, b)} p^{a-1}(1-p)^{b-1}, \quad 0<p<1, a, b>0
$$

Here the limit of p is $0<p<1$.
So, compound distribution is obtained as

$$
\int_{0}^{1}{ }^{n} C_{x} p^{x} q^{n-x} \frac{1}{\beta(a, b)} p^{a-1}(1-p)^{b-1} d p={ }^{n} C_{x} \frac{1}{\beta(a, b)} \int_{0}^{1} p^{x+a-1}(1-p)^{n-x+b-1} d p
$$

Using Beta Function, Solve above integration

$$
\begin{aligned}
& ={ }^{n} C_{x} \frac{1}{\beta(a, b)} \beta(x+a, n-x+b)={ }^{n} C_{x} \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \frac{\Gamma(a+x) \Gamma(n+b-x)}{\Gamma(n+a+b)} \\
& ={ }^{n} C_{x} \frac{a(a+1)(a+2), \ldots .,(a+x-1) b(b+1) \ldots .(b+n-x-1)}{(a+b)(a+b+1) \ldots(a+b+n-1)}
\end{aligned}
$$

So we can say that

$$
f(p)={ }^{n} C_{x} \frac{a(a+1)(a+2), \ldots \ldots,(a+x-1) b(b+1) \ldots .(b+n-x-1)}{(a+b)(a+b+1) \ldots(a+b+n-1)} ; \quad x=0,1,2, \ldots
$$

This is the pmf of Polya- Eggenberger (Beta Binomial) Distribution so we can say that the compound distribution is Polya- Eggenberger (Beta Binomial) Distribution.

Ex Find $\operatorname{Binomial}(n, p) \triangle_{n} \operatorname{Poisson}(\theta)$
Sol. We have to find compound distribution if F_{1} is Binomial distribution with parameter n and p. If n is follow Poisson distribution with parameter (θ)

$$
\operatorname{Binomial}(n p)={ }^{n} C_{x} p^{x} q^{n-x}, \quad n=0,1,2 \ldots x
$$

$$
\operatorname{Poisson}(\theta)=\frac{e^{-\theta} \theta^{n}}{n!}, \quad n=0,1,2 \ldots
$$

Here the limit of n is $n=0,1,2 \ldots x$.
So, compound distribution is obtained as

$$
\begin{aligned}
& \sum_{n=0}^{x}{ }^{n} C_{x} p^{x} q^{n-x} \frac{e^{-\theta} \theta^{n}}{n!}=\sum_{n=0}^{x} \frac{n!}{x!(n-x)!} p^{x} q^{n-x} \frac{e^{-\theta} \theta^{n}}{n!} \\
& =\frac{p^{x} q^{-x} e^{-\theta}}{x!} \sum_{n=x}^{\infty} \frac{(1-p)^{n} \theta^{n}}{(n-x)!}=\frac{p^{x} q^{-x} e^{-\theta}(\theta q)^{x}}{x!} \sum_{n=x}^{\infty} \frac{(\theta(1-p))^{(n-x)}}{(n-x)!} \\
& =\frac{p^{x} \theta^{x} e^{-\theta} e^{\theta q}}{x!}=\frac{p^{x} \theta^{x} e^{-\theta p}}{x!}
\end{aligned}
$$

So we can say that
$f(n)=\frac{p^{x} \theta^{x} e^{-\theta} e^{\theta q}}{x!}=\frac{p^{x} \theta^{x} e^{-\theta p}}{x!} \quad x=0,1,2, \ldots$

Assignment

1. Find Poisson $(\theta) \triangle_{\theta / \phi=j}$ Poisson (α)
2. Find $\operatorname{Poisson}(\theta) \triangle_{\theta} \operatorname{Exp}(\alpha)$
3. Find $\operatorname{bin}(n, p) \triangle_{n} \operatorname{bin}(m, q)$
4. Find $\exp (\theta) \triangle_{\theta} U(0,1)$

References

- S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Sons.
- A. Kumar, A. Chaudhary, Probability Distribution \& Theory of Attributes, Krishna's Educational Publishers.
- A. Kumar, A. Chaudhary, Probability Distribution \& Numerical Analysis, Krishna's Educational Publishers.
- B. Lal, S. Arora, Introducing Probability \& Statistics, Satya Prakashan.
- V.B. Rastogi, Fundamentals of Biostatistics, ANE Books.

