2.2. POINT ESTIMATION

2.2.3 Minimum Variance Unbiased Estimators

If an unbiased estimator has the variance equal to the CRLB, it must have the minimum variance amongst all unbiased estimators. We call it the **minimum** variance unbiased estimator (MVUE) of ϕ .

Sufficiency is a powerful property in finding unbiased, minimum variance estimators. If $T(\mathbf{Y})$ is an unbiased estimator of ϑ and S is a statistic sufficient for ϑ , then there is a function of S that is also an unbiased estimator of ϑ and has no larger variance than the variance of $T(\mathbf{Y})$. The following theorem formalizes this statement.

Theorem 2.5. Rao-Blackwell theorem.

Let $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^T$ be a random sample, $\mathbf{S} = (S_1, \dots, S_p)^T$ be jointly sufficient statistics for $\boldsymbol{\vartheta} = (\vartheta_1, \dots, \vartheta_p)^T$ and $T(\mathbf{Y})$ (which is **not** a function of \mathbf{S}) be an unbiased estimator of $\phi = g(\boldsymbol{\vartheta})$. Then, $U = E(T|\mathbf{S})$ is a statistic such that

(a) $E(U) = \phi$, so that U is an unbiased estimator of ϕ , and

(**b**)
$$\operatorname{var}(U) < \operatorname{var}(T)$$
.

Proof. First, we note that U is a statistic. Indeed, since S are jointly sufficient for ϑ , the conditional distribution Y|S does not depend on the parameters and so the conditional distribution of a function T(Y) given S, T|S, does not depend on ϑ either. Thus, U = E(T|S) is a function of the random sample only, not a function of ϑ , therefore it is a statistic.

Next, we will use the known facts about the conditional expectation and variance given Exercise 1.15. Since T is an unbiased estimator of ϕ , we have

$$\mathbf{E}(U) = \mathbf{E}[\mathbf{E}(T|\mathbf{S})] = \mathbf{E}(T) = \phi.$$

So U is also an unbiased estimator of ϕ , which proves (a). Finally, we get

$$\operatorname{var}(T) = \operatorname{var}[\operatorname{E}(T|\boldsymbol{S})] + \operatorname{E}[\operatorname{var}(T|\boldsymbol{S})]$$
$$= \operatorname{var}(U) + \operatorname{E}[\operatorname{var}(T|\boldsymbol{S})].$$

However, since T is not a function of S we have var(T|S) > 0, thus, it follows that E[var(T|S)] > 0, and hence (b) is proved.

It means that, if we have an unbiased estimator, T, of ϕ , which is not a function of the sufficient statistics, we can always find an unbiased estimator which has smaller variance, namely $U = E(T|S_1, \ldots, S_p)$ which is a function of S. We thus have the following result.

Corollary 2.1. *MVUEs must be functions of sufficient statistics.*

Example 2.11. Suppose that Y_1, \ldots, Y_n are independent $\text{Poisson}(\lambda)$ random variables. Then $T = Y_i$, for any $i = 1, \ldots, n$, is an unbiased estimator of λ . Also, $S = \sum_{i=1}^{n} Y_i$ is a sufficient statistic for λ and T is not a function of S.

Hence, a better unbiased estimator is given by any of $E(Y_1 | \sum_{i=1}^n Y_i), \dots, E(Y_n | \sum_{i=1}^n Y_i).$

Now, since $E(Y_1 | \sum_{i=1}^n Y_i) = \dots = E(Y_n | \sum_{i=1}^n Y_i)$ and $E(Y_1 | \sum_{i=1}^n Y_i) + E(Y_2 | \sum_{i=1}^n Y_i) + \dots + E(Y_n | \sum_{i=1}^n Y_i) = E\left[\sum_{i=1}^n Y_i | \sum_{i=1}^n Y_i\right] = \sum_{i=1}^n Y_i,$

we have

$$n \operatorname{E}(Y_1 | \sum_{i=1}^n Y_i) = \sum_{i=1}^n Y_i.$$

Hence $U = E(Y_1 | \sum_{i=1}^n Y_i) = \overline{Y}$ is a better unbiased estimator of λ than Y_1 or than any of Y_i . In fact, \overline{Y} is a MVUE of λ as its variance is equal to the Cramer-Rao Lower Bound for λ . (See Example 2.12)

2.2.4 Complete sufficient statistics

 $T(\mathbf{Y})$ is a function of random sample $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)$ and so it is a random variable as well. Hence, we may ask about the distribution of $T(\mathbf{Y})$. For example, assume that σ^2 is known equal to σ_o^2 . Then, to make inference about μ we may "reduce" the random sample to its mean. We know that $T(\mathbf{Y}) = \overline{Y} \sim \mathcal{N}\left(\mu, \frac{\sigma_o^2}{n}\right)$ if $Y_i \sim \mathcal{N}(\mu, \sigma_o^2)$ and we may write

$$f_T(t;\mu|\sigma_o^2) = \frac{1}{\sqrt{2\pi\sigma_o}} e^{n(t-\mu)^2/2\sigma_o^2}.$$

Due to this "data reduction" we can make inference about μ based on the distribution of \overline{Y} only rather than on the multivariate distribution of the whole random

sample Y.

A minimal sufficient statistic reduces data maximally while retaining all the information about the parameter ϑ . We would also like such a statistic to be independent of any so called *ancillary* functions of the random sample whose distributions do not depend on the parameter of interest. Such an independent statistic is called *complete*.

First, we introduce a notion of a complete family of distributions.

Definition 2.8. A family of distributions $\mathcal{P} = \{P_{\vartheta} : \vartheta \in \Theta\}$ defined on a common space \mathcal{Y} is called **complete** if for any real measurable function h(Y)

$$E[h(Y)] = 0$$
 implies that $P_{\vartheta}(h(Y) = 0) = 1$ for all $\vartheta \in \Theta$.

Note: $P_{\vartheta}(h(Y) = 0) = 1$ can also be written as $P_{\vartheta}(h(Y) \neq 0) = 0$, which means that function h(Y) may have non-zero values only on a set $\mathcal{B} \subset \mathcal{Y}$ such that $P(Y \in \mathcal{B}) = 0$. Then we say that h(Y) = 0 almost surely in \mathcal{Y} .

Definition 2.9. A statistic $T(\mathbf{Y})$ is called **complete** for the family $\mathcal{P} = \{P_{\boldsymbol{\vartheta}} : \boldsymbol{\vartheta} \in \Theta\}$ on \mathcal{Y} if the family of probability distributions $\mathcal{P}_T = \{P_{\boldsymbol{\vartheta},T} : \boldsymbol{\vartheta} \in \Theta\}$ is complete for all $\boldsymbol{\vartheta}$, that is,

$$E[h(T)] = 0$$
 implies that $P\{h(T) = 0\} = 1$.

Example 2.12. Let $\mathbf{Y} = (Y_1, \dots, Y_n)$ be a random sample from a family of Bernoulli(p) distributions for $0 . We will show that <math>T(\mathbf{Y}) = \sum_{i=1}^{n} Y_i$ is a complete sufficient statistic for p.

Sufficiency The pmf of each Y_i is $P(Y_i = y_i) = p^{y_i}(1-p)^{1-y_i}$ and the joint pmf for Y can be factorized as follows:

$$P(\mathbf{Y} = \mathbf{y}) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$
$$= p^{\sum_{i=1}^{n} y_i} (1-p)^{n-\sum_{i=1}^{n} y_i} \times 1$$

Hence, $T(\mathbf{Y}) = \sum_{i=1}^{n} Y_i$ is a sufficient statistic for p.

Completeness Now, we know that a sum of independent Bernoulli rvs has a Binomial distribution, i.e,

$$T \sim Bin(n, p)$$
 for $0 .$

Let h(T) be such that E[h(T)] = 0. Then

$$0 = E[h(T)]$$

= $\sum_{t=0}^{n} h(t) {}^{n}C_{t}p^{t}(1-p)^{n-t}$
= $(1-p)^{n}\sum_{t=0}^{n} h(t) {}^{n}C_{t}\left(\frac{p}{1-p}\right)^{t}$

The factor $(1-p)^n \neq 0$ for any $p \in (0,1)$. Thus, it must be that

$$0 = \sum_{t=0}^{n} h(t) {}^{n}C_{t} \left(\frac{p}{1-p}\right)^{t}$$
$$= \sum_{t=0}^{n} h(t) {}^{n}C_{t}r^{t}$$

for all $r = \frac{p}{1-p} > 0$. The last expression is a polynomial of degree n in r. For the polynomial to be zero for all r the coefficients $h(t) {}^{n}C_{t}$ must all be zero. It means that h(t) = 0 for all $t \in \{0, 1, ..., n\}$. Since $P(T = t, t \in \{0, 1, ..., n\}) = 1$ it means that $P\{h(T) = 0\} = 1$ for all p. Hence, T is a complete statistic for p.

The following theorem gives a connection between complete and minimal sufficient statistics:

Theorem 2.6. If $T(\mathbf{Y})$ is a complete sufficient statistic for a family of distributions with parameter ϑ , then $T(\mathbf{Y})$ is a minimal sufficient statistic for the family.

Exercise 2.7. Suppose that Y_1, Y_2, \ldots, Y_n is a random sample from a Poisson (λ) distribution. Show that $T(\mathbf{Y}) = \sum_{i=1}^n Y_i$ is a complete sufficient statistic for λ .

The following Theorem establishes the minimum variance property of complete sufficient statistics.

2.2. POINT ESTIMATION

Theorem 2.7. Lehmann-Scheffé Theorem.

Let $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^T$ be a random sample. If $\mathbf{S}(\mathbf{Y})$ is a jointly complete sufficient statistic and $T(\mathbf{Y})$ is an unbiased estimator for $\phi = g(\boldsymbol{\vartheta})$ then

$$U = \mathrm{E}[T|\boldsymbol{S}]$$

is, with probability 1, a unique MVUE of ϕ .

Proof. First, to prove that U is a MVUE of $g(\boldsymbol{\vartheta})$, we show that whatever unbiased estimator $T(\boldsymbol{Y})$ we take we obtain the same $E[T|\boldsymbol{S}]$, i.e., the same U. Then, by Rao-Blackwell Theorem, condition (b), U must be MVUE of $g(\boldsymbol{\vartheta})$.

Suppose that $T(\mathbf{Y})$ and $T'(\mathbf{Y})$ are any two unbiased estimators of $g(\boldsymbol{\vartheta})$. Let

$$U = \mathbf{E}[T|\mathbf{S}]$$
$$U' = \mathbf{E}[T'|\mathbf{S}].$$

Then we have

$$E\{U - U'\}$$

= $E\{E[T|S] - E[T'|S]\}$
= $E(T) - E(T')$
= $g(\vartheta) - g(\vartheta)$
= 0.

Hence, by completeness of S(Y) we get

$$P\left[U\big(\boldsymbol{S}(\boldsymbol{Y})\big) = U'\big(\boldsymbol{S}(\boldsymbol{Y})\big)\right] = 1$$

for all ϑ . This proves the first part of the theorem. Now, we will show uniqueness.

Suppose that U and T^* are two MVUE of $g(\boldsymbol{\vartheta})$. Then if T^* is a function of the sufficient statistics $\boldsymbol{S}(\boldsymbol{Y})$ then, as shown above, it must be equal to U. If T^* is not a function of $\boldsymbol{S}(\boldsymbol{Y})$ then $\operatorname{var}(U) < \operatorname{var}(T^*)$, hence T^* cannot be a MVUE. Hence, U is a unique MVUE of $g(\boldsymbol{\vartheta})$.

Note: Lehmann-Scheffé Theorem may be used to construct MVUE of $g(\vartheta)$ by two methods. Both are based on complete sufficient statistics S(Y).

 Method 1: If we can find a function of S = S(Y), say U(S) such that E[U(S)] = g(ϑ) then U(S) is a unique MVUE of g(ϑ). Method 2: If we can find any unbiased estimator T = T(Y) of g(θ), then U(S) = E[T|S] is a unique MVUE of g(θ).

Example 2.13. Method 1. Let $Y_i \sim_{iid}$ Bernoulli(p), $i = 1, \ldots, n$. Earlier we showed that $\sum_{i=1}^{n} Y_i$ is a complete sufficient statistic for p. Denote it by $S(\mathbf{Y})$.

 $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} S(Y)$ is an unbiased estimator of p, hence, as a function of a complete sufficient statistic, it is the unique MVUE of p.

Now, let g(p) = var(Y) = p(1 - p). The sample variance

$$\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\overline{Y})^2$$

is an unbiased estimator of g(p). It is in fact a function of the complete sufficient statistic $S(\mathbf{Y}) = \sum_{i=1}^{n} Y_i$. Hence, it is the unique MVUE of g(p) = p(1-p).

Exercise 2.8. Suppose that $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ is a random sample from a Poisson (λ) distribution. Find a MVUE of $\phi = \lambda^2$.

2.2.5 Exponential families

There is a class of distributions, including the normal, Poisson, binomial, gamma, chi-squared, exponential and others for which complete sufficient statistics always exist.

Definition 2.10. A family of probability distributions $\mathcal{P} = \{P_{\vartheta} : \vartheta \in \Theta\}$ is called *exponential* if for every distribution belonging to the family, its pdf (pmf) can be written in the form

$$f(y; \boldsymbol{\vartheta}) = h(y) \exp\left\{\sum_{j=1}^{p} a_j(\boldsymbol{\vartheta}) b_j(y) + c(\boldsymbol{\vartheta})\right\}.$$

Note: For the one-parameter exponential family, this reduces to

$$f(y;\vartheta) = h(y) \exp\{a(\vartheta)b(y) + c(\vartheta)\}.$$

Example 2.14. Suppose that $Y \sim Bin(m, p)$, where m is known. Then we may write

$$P(Y = y; p) = \binom{m}{y} p^{y} (1-p)^{m-y}$$

= $\binom{m}{y} \exp \{y \log p + (m-y) \log(1-p)\}$
= $\binom{m}{y} \exp \{y \log p - y \log(1-p) + m \log(1-p)\}$
= $\binom{m}{y} \exp \{y \log \left(\frac{p}{1-p}\right) + m \log(1-p)\}.$

Thus, we have $a(p) = \log\{p/(1-p)\}, b(y) = y, c(p) = m \log(1-p)$ and $h(y) = \binom{m}{y}$. Hence, $\mathcal{P} = \{P(Y = y; p) : p \in (0, 1)\}$ is an exponential family of distributions.

Exercise 2.9. Show that $\mathcal{P} = \{P(Y = y; \lambda) = \frac{\lambda^y e^{-\lambda}}{y!} I_{\{0,1,2,\ldots\}} : \lambda > 0\}$ is an exponential family of distributions.

Example 2.15. Suppose that $Y \sim \mathcal{N}(\mu, \sigma^2)$. Then we may write

$$f(y;\mu,\sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2\sigma^{2}}}$$

= $\exp\left\{-\frac{1}{2}\log(2\pi\sigma^{2}) - \frac{(y-\mu)^{2}}{2\sigma^{2}}\right\}$
= $\exp\left\{-\frac{y^{2}}{2\sigma^{2}} + \frac{\mu y}{\sigma^{2}} - \frac{\mu^{2}}{2\sigma^{2}} - \frac{1}{2}\log(2\pi\sigma^{2})\right\}$
= $\exp\left\{\frac{\mu}{\sigma^{2}}y - \frac{1}{2\sigma^{2}}y^{2} - \frac{\mu^{2}}{2\sigma^{2}} - \log\sigma - \frac{1}{2}\log(2\pi)\right\}.$
= $\frac{1}{\sqrt{2\pi}}\exp\left\{\frac{\mu}{\sigma^{2}}y - \frac{1}{2\sigma^{2}}y^{2} - \frac{\mu^{2}}{2\sigma^{2}} - \log\sigma\right\}.$

Thus, we have $a_1(\mu, \sigma^2) = \mu/\sigma^2$, $b_1(y) = y$, $a_2(\mu, \sigma^2) = -1/(2\sigma^2)$, $b_2(y) = y^2$, $c(\mu, \sigma^2) = -\mu^2/(2\sigma^2) - \log \sigma$ and $h(y) = \frac{1}{\sqrt{2\pi}}$. Hence, the family of normal distributions, $\mathcal{P} = \{f(y; \mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+\}$, is a family of exponential distributions.

Lemma 2.3. Let $\mathbf{Y} = (Y_1, \ldots, Y_n)^T$ be a random sample from a distribution belonging to an exponential family of distributions. Then, there exists a nontrivial jointly sufficient statistic $\mathbf{S} = (S_1, \ldots, S_p)^T$ for $\boldsymbol{\vartheta} = (\vartheta_1, \ldots, \vartheta_p)^T$ such that

$$S_j = \sum_{i=1}^n b_j(Y_i), \ j = 1, \dots, p.$$
 (2.3)

Proof. Note that for members of the exponential family the joint pdf (pmf) of Y can be written as

$$\prod_{i=1}^{n} \left[h(y_i) \exp\left\{ \sum_{j=1}^{p} a_j(\boldsymbol{\vartheta}) b_j(y_i) + c(\boldsymbol{\vartheta}) \right\} \right]$$
$$= \left[\prod_{i=1}^{n} h(y_i) \right] \exp\left\{ \sum_{i=1}^{n} \sum_{j=1}^{p} a_j(\boldsymbol{\vartheta}) b_j(y_i) + nc(\boldsymbol{\vartheta}) \right\}$$
$$= \left[\prod_{i=1}^{n} h(y_i) \right] \exp\left\{ \sum_{j=1}^{p} a_j(\boldsymbol{\vartheta}) \left[\sum_{i=1}^{n} b_j(y_i) \right] + nc(\boldsymbol{\vartheta}) \right\}$$

Hence, by the Neyman's Factorization Theorem $S = \left(\sum_{i=1}^{n} b_1(Y_i), \dots, \sum_{i=1}^{n} b_p(Y_i)\right)^{\mathrm{T}}$ is a jointly sufficient statistic for ϑ .

A stronger statement, given here without proof, is following:

Theorem 2.8. Lehmann's Theorem

If $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ is a random sample from a distribution belonging to an exponential family, then $S_j = \sum_{i=1}^n b_j(Y_i)$ for $j = 1, 2, \dots, p$, are the joint complete sufficient statistics for $\boldsymbol{\vartheta} = (\vartheta_1, \dots, \vartheta_p)^T$.

From this and from Theorem 2.7 we have the following:

Corollary 2.2. If a distribution belongs to an exponential family than any function of the jointly complete sufficient statistics $\mathbf{S} = (S_1, \ldots, S_p)^T$, which is an unbiased estimator of $g(\boldsymbol{\vartheta})$, is the unique MVUE of $\phi = g(\boldsymbol{\vartheta})$.

Example 2.16. Suppose that $Y_i \sim \mathcal{N}(\mu, \sigma^2)$. Normal distributions belong to the family of exponential distributions, hence from Example 2.15 and Theorem 2.8, it follows that $S_1 = \sum_{i=1}^n Y_i$ and $S_2 = \sum_{i=1}^n Y_i^2$ are the joint complete sufficient statistics for μ and σ^2 . Then, \overline{Y} and $S^2 = \sum_{i=1}^n (Y_i - \overline{Y})^2/(n-1)$ are MVUEs of μ and σ^2 .

2.2. POINT ESTIMATION

Exercise 2.10. Let $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ be a random sample from a Gamma distribution, Gamma (λ, α) , with the following pdf

$$f(y; \lambda, \alpha) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} e^{-\lambda y}, \text{ for } y > 0.$$

- (a) Show that the distribution belongs to an exponential family.
- (b) Identify the joint complete sufficient statistics for $(\lambda, \alpha)^{\mathrm{T}}$.