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2.2.3 Minimum Variance Unbiased Estimators

If an unbiased estimator has the variance equal to the CRUBust have the
minimum variance amongst all unbiased estimators. We tafieiminimum
variance unbiased estimatofMVUE) of ¢.

Sufficiency is a powerful property in finding unbiased, minimmvariance estima-
tors. If I'(Y) is an unbiased estimator ofand S is a statistic sufficient fot),
then there is a function of that is also an unbiased estimatoriofnd has no
larger variance than the varianceofY). The following theorem formalizes this
statement.

Theorem 2.5. Rao-Blackwell theorem.

LetY = (V3,Ys,...,Y,)" be a random sample§ = (Si,...,S,)T be jointly
sufficient statistics fo = (¢4, ...,9,)T andT(Y") (which isnot a function of
S) be an unbiased estimator of= g(¢). Then,U = E(T'|S) is a statistic such
that

(@) E(U) = ¢, so thatU is an unbiased estimator gf and

(b) var(U) < var(T).

Proof. First, we note thal/ is a statistic. Indeed, sincg are jointly sufficient for

9, the conditional distributioy”|.S does not depend on the parameters and so the
conditional distribution of a functiofi’(Y"') given.S, T'|S, does not depend oft
either. Thus{J = E(T'|.S) is a function of the random sample only, not a function
of 19, therefore it is a statistic.

Next, we will use the known facts about the conditional exaien and variance
given Exercise 1.15. SincEis an unbiased estimator ¢f we have

E(U) = E[E(T|S)] = E(T) = ¢.
SoU is also an unbiased estimator@fwhich proves (a). Finally, we get

var(T) = var[E(T|S)] + E[var(T|S)]
= var(U) + E[var(T|S)].

However, sincé” is not a function ofS we havevar(7'|.S) > 0, thus, it follows
thatE[var(7'|S)] > 0, and hence (b) is proved. 0
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It means that, if we have an unbiased estimdtomf ¢, which is not a function
of the sufficient statistics, we can always find an unbiaséidhasor which has
smaller variance, namely = E(T'|Sy,...,S,) which is a function ofS. We

thus have the following result.

Corollary 2.1. MVUEs must be functions of sufficient statistics.

Example2.11 Suppose thati, ..., Y, are independeritoisson(A) random vari-
ables. Therl’ = Y}, for anyi = 1,...,n, is an unbiased estimator af Also,
S =" Y, is asufficient statistic foh and7’ is not a function ofS.

Hence, a better unbiased estimator is given by ai(df| >~ | Y;),..., E(Y,| > i, Yi).
Now, sinceE(Y;| > | Yi) = E(Y,|>" ,Y;) and
E(WZYZ-HE(YQ\Zm>+...+E<Yn|Zn> —E[D> vl vi]=>Y

=1 =1 =1 =1 i=1 i=1
we have

EWY V) =)V
i=1 i=1
HenceU = E(Yi| Y., Y:) = Y is a better unbiased estimator bfthany; or
than any ofY;. In fact,Y is a MVUE of \ as its variance is equal to the Cramer-
Rao Lower Bound foi. (See Example 2.12) 0

2.2.4 Complete sufficient statistics

T(Y) is a function of random sample = (Y7,Y5,...,Y,) and soitis a random
variable as well. Hence, we may ask about the distributidhi(df ). For example,
assume that? is known equal tar2. Then, to make inference aboutwe may

“reduce” the random sample to its mean. We know het') =Y ~ N (p, %2)

if Y; ~ N (u, 02) and we may write

1
fr(t plo?) = ——=—ent=m"/27,

\V2mo,

Due to this “data reduction” we can make inference ahobased on the distri-
bution of Y only rather than on the multivariate distribution of the wehcandom
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sampleY'.

A minimal sufficient statistic reduces data maximally whigéaining all the infor-
mation about the parametér We would also like such a statistic to be indepen-
dent of any so calledncillary functions of the random sample whose distributions
do not depend on the parameter of interest. Such an indepestdéstic is called
complete

First, we introduce a notion of a complete family of disttibus.

Definition 2.8. A family of distributions® = { Py : ¥ € ©} defined on a common
space) is calledcomplete if for any real measurable functio(Y")

E[h(Y)] =0 implies that Py(h(Y)=0) =1 for all ¥ € ©.

O

Note: Py(h(Y) = 0) = 1 can also be written a&y (h(Y) # 0) = 0, which
means that function(Y’) may have non-zero values only on a gt ) such
that P(Y € B) = 0. Then we say thai(Y') = 0 almost surely iny.

Definition 2.9. A statistic7'(Y") is called complete for the familyP? = {Py :
¥ € ©} on) if the family of probability distribution®r = {Pyr : 9 € ©} is
complete for alk?, that is,

E[h(T)] = 0 implies thatP{h(T) = 0} = 1.

U

Example2.12 LetY = (Y;,...,Y,) be a random sample from a family of
Bernoulli(p) distributions for0 < p < 1. We will show that'(Y") = ", Y; is
a complete sufficient statistic for

Sufficiency The pmf of eacly; is P(Y; = ;) = p¥ (1 — p)'~¥ and the joint pmf
for Y can be factorized as follows:

PlY =y) = pri(l — p)l—yi
i=1
= pz?:1 yl(l — p)"—Z?:l Yi X 1

HenceI'(Y) = )", Y; is a sufficient statistic fop.
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CompletenessNow, we know that a sum of independent Bernoulli rvs has a Bi-
nomial distribution, i.e,

T ~ Bin(n,p) for0<p<1, t=0,1,...,n.

Let 2(T") be such thak[i(T")] = 0. Then

0= E[A(7)
=) h(t)"Cip'(1 —p)"*
RO TCEACR

t=0

The factor(1 — p)™ # 0 for anyp € (0, 1). Thus, it must be that

0= g h(t)"C, <L)t

L=p
= h(t)"Cr'!
t=0

forall r = l%p > 0. The last expression is a polynomial of degreim 7.
For the polynomial to be zero for atlthe coefficients:(¢) "C; must all be
zero. It means thai(t) = O forall ¢t € {0,1,...,n}. SinceP(T =t,t €
{0,1,...,n}) = litmeans that’{h(7") = 0} = 1 for all p. HenceT"is a
complete statistic fop. O

The following theorem gives a connection between completerainimal suffi-
cient statistics:

Theorem 2.6.1f T'(Y") is a complete sufficient statistic for a family of distrilmurts
with parametend, thenT'(Y') is a minimal sufficient statistic for the family.

Exercise2.7. Suppose that}, Ys, ..., Y, is a random sample fromRoisson(\)
distribution. Show thal'(Y") = >_" | Y; is a complete sufficient statistic for

The following Theorem establishes the minimum varianceerty of complete
sufficient statistics.
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Theorem 2.7. Lehmann-Sche&ffTheorem.
LetY = (V1,Y,,...,Y,)" be a random sample. I$(Y") is a jointly complete
sufficient statistic and’(Y") is an unbiased estimator far = ¢g(¥) then

U =E[T|S]
is, with probability 1, a unique MVUE af.

Proof. First, to prove that/ is a MV UE of g(), we show that whatever unbi-
ased estimatdf’(Y') we take we obtain the sant87’|S], i.e., the samé&’. Then,
by Rao-Blackwell Theorem, condition (), must be MVUE ofg(1).

Suppose thdf'(Y') and7’(Y") are any two unbiased estimatorsggf}). Let

U =E[T|S]
U' = E[T'|S].
Then we have
E{U - U"}
= B{E[TS] - E[T"|8]}
=E(T) — E(T")
= 9(8) — g(®)
= 0.
Hence, by completeness 8{Y") we get

P[U(S(¥) =U'(S(¥))] =1

for all 19. This proves the first part of the theorem. Now, we will showgqueness.

Suppose thal/ and7T* are two MVUE ofg(«3). Then if T* is a function of the
sufficient statisticsS(Y") then, as shown above, it must be equalitolf 7™ is
not a function ofS(Y') thenvar(U) < var(7*), henceT* cannot be a MVUE.
HenceU is a unique MVUE ofy(19). 0

Note: Lehmann-Scheffé Theorem may be used to construct EI\gtly(3) by
two methods. Both are based on complete sufficient staiSt{iz”).

e Method 1: If we can find a function af = S(Y'), sayU(S) such that
E[U(S)] = g(9¥) thenU(S) is a unique MVUE ofy(19).
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e Method 2: If we can find any unbiased estimdfor= 7'(Y) of g(«3), then
U(S) = E[T|S] is a unique MVUE ofg(¥).

Example2.13 Method 1. LetY; ~ Bernoulli(p), ¢ = 1,...,n. Earlier we
showed thad " | V; is a complete sufficient statistic fpr Denote it byS(Y).

Y =237V, =25(Y) is an unbiased estimator pfhence, as a function of a

T on

complete sufficient statistic, it is the unique MVUEjof

Now, letg(p) = var(Y) = p(1 — p). The sample variance

n

LS -y

n—14
i=1

is an unbiased estimator gfp). It is in fact a function of the complete sufficient
statisticS(Y') = >, Yi. Hence, itis the unique MVUE af(p) = p(1 — p). O

Exercise2.8. Suppose thatY” = (Y1, ..., Y,)T isarandom sample fromRvisson ()
distribution. Find a MVUE ofp = \2.

2.2.5 Exponential families

There is a class of distributions, including the normal sBon, binomial, gamma,
chi-squared, exponential and others for which completiécseriit statistics always
exist.

Definition 2.10. A family of probability distribution® = { Py : ¥ € ©} is called
exponential if for every distribution belonging to the family, its pdingf) can be
written in the form

f(y;9) = h(y) exp {Z a;(9)b; (y) + 6(79)} :

j=1

Note: For the one-parameter exponential family, this reduo

f(y;9) = h(y) expla(P)b(y) + c(V)}.
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Example2.14 Suppose that” ~ Bin(m, p), wherem is known. Then we may

write
) o

)exp{ylogp+(m y)log(1—p)}

P(Y =yip) =

< 3

)exp{ylogp ylog(1 —p) +mlog(l —p)}

)exp {y log (1 pp) + mlog(1 —p)}.

Thus, we havei(p) = log{p/(1 — p)}, b(y) = v, c(p) = mlog(1l — p) and
h(y) = (27) Hence,P = {P(Y = y;p) : p € (0,1)} is an exponential family

(v
(
(v
Y

of distributions. 0

Exercise2.9. Show thatP = {P(Y = y;\) = 2
exponential family of distributions.

A > 0}isan

Example2.15 Suppose that” ~ N (i, o). Then we may write

1 _(w-w?
flysp,o®) = —e” 27
2ro

0 1
= exp{;y— 553Y T 52 —logo — §log(27r)}.

Thus, we have (11, 0%) = 11/0?, bi(y) =y, as(p, 0%) = —1/(20?), ba(y) = v*,
c(p,0?) = —p?/(20%) —logo andh(y) = \/% Hence, the family of normal
distributions,? = {f(y; i, 0?) : p € R,0* € RT}, is a family of exponential

distributions. 0
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Lemma 2.3.LetY = (Yi,...,Y,)" be a random sample from a distribution
belonging to an exponential family of distributions. Thémgre exists a non-
trivial jointly sufficient statisticS = (S),...,S,)" for 9 = (¢4,...,9,)T such
that

S;=Y _bi(Yi), j=1,....p (2.3)
i=1

Proof. Note that for members of the exponential family the joint gathf) of Y
can be written as

H[ Yi eXp{ZCLJ (19)}

=1

= h(y;)| exp {Z Z a;(9 )+ nc(fﬁ)}

i=1 =1 j=1

._::13

h(ys) | exp {Z a;(9)[ D bi(wi)] + nC(’l‘f‘)}

j=1 i=1

Il
—

1

.
Il

Hence, by the Neyman'’s Factorization Theorm:- (-7 b (Y;),..., > 0 bp(Y,-))T
is a jointly sufficient statistic fof. O

A stronger statement, given here without proof, is follogrin

Theorem 2.8.Lehmann’s Theorem
IfY = (Y1,...,Y,)"T is a random sample from a distribution belonging to an ex-
ponential family, thers; = >~ | b;(Y;) for j = 1,2,...,p, are the joint complete
sufficient statistics fot = (v, ...,9,)". 0

From this and from Theorem 2.7 we have the following:

Corollary 2.2. If a distribution belongs to an exponential family than aopd-
tion of the jointly complete sufficient statistiS&s = (5, ...,S,)", which is an
unbiased estimator af(13), is the unique MVUE af = ¢g(19). 0

Example2.16 Suppose thay; ~ J\/(u, 2). Normal distributions belong to the

family of exponential dlstrlbutlons hence from Examplé3®2and Theorem 2.8,
it follows thatS; = Y | ¥; andS, = >, V;? are the joint complete sufficient
statistics forz ando?. Then,Y andS? =37 (Y; —Y)?/(n — 1) are MVUEs of
pando?. O
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Exercise2.1Q LetY = (Vi,...,Y,)T be a random sample from a Gamma distri-
bution,Gamma(\, «), with the following pdf

o

['(a)

flyih a) = ——y*te, fory > 0.

(a) Show that the distribution belongs to an exponential family

(b) Identify the joint complete sufficient statistics fox, o).



