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2.2.3 Minimum Variance Unbiased Estimators

If an unbiased estimator has the variance equal to the CRLB, it must have the
minimum variance amongst all unbiased estimators. We call it the minimum
variance unbiased estimator(MVUE) of φ.

Sufficiency is a powerful property in finding unbiased, minimum variance estima-
tors. If T (Y ) is an unbiased estimator ofϑ andS is a statistic sufficient forϑ,
then there is a function ofS that is also an unbiased estimator ofϑ and has no
larger variance than the variance ofT (Y ). The following theorem formalizes this
statement.

Theorem 2.5.Rao-Blackwell theorem.
Let Y = (Y1, Y2, . . . , Yn)

T be a random sample,S = (S1, . . . , Sp)
T be jointly

sufficient statistics forϑ = (ϑ1, . . . , ϑp)
T andT (Y ) (which isnot a function of

S) be an unbiased estimator ofφ = g(ϑ). Then,U = E(T |S) is a statistic such
that

(a) E(U) = φ, so thatU is an unbiased estimator ofφ, and

(b) var(U) < var(T ).

Proof. First, we note thatU is a statistic. Indeed, sinceS are jointly sufficient for
ϑ, the conditional distributionY |S does not depend on the parameters and so the
conditional distribution of a functionT (Y ) givenS, T |S, does not depend onϑ
either. Thus,U = E(T |S) is a function of the random sample only, not a function
of ϑ, therefore it is a statistic.

Next, we will use the known facts about the conditional expectation and variance
given Exercise 1.15. SinceT is an unbiased estimator ofφ, we have

E(U) = E[E(T |S)] = E(T ) = φ.

SoU is also an unbiased estimator ofφ, which proves (a). Finally, we get

var(T ) = var[E(T |S)] + E[var(T |S)]
= var(U) + E[var(T |S)].

However, sinceT is not a function ofS we havevar(T |S) > 0, thus, it follows
thatE[var(T |S)] > 0, and hence (b) is proved.

�
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It means that, if we have an unbiased estimator,T , of φ, which is not a function
of the sufficient statistics, we can always find an unbiased estimator which has
smaller variance, namelyU = E(T |S1, . . . , Sp) which is a function ofS. We
thus have the following result.

Corollary 2.1. MVUEs must be functions of sufficient statistics.

Example2.11. Suppose thatY1, . . . , Yn are independentPoisson(λ) random vari-
ables. ThenT = Yi, for any i = 1, . . . , n, is an unbiased estimator ofλ. Also,
S =

∑n
i=1 Yi is a sufficient statistic forλ andT is not a function ofS.

Hence, a better unbiased estimator is given by any ofE(Y1|
∑n

i=1 Yi), . . . ,E(Yn|
∑n

i=1 Yi).

Now, sinceE(Y1|
∑n

i=1 Yi) = . . . = E(Yn|
∑n

i=1 Yi) and

E(Y1|
n

∑

i=1

Yi)+E(Y2|
n

∑

i=1

Yi)+ . . .+E(Yn|
n

∑

i=1

Yi) = E
[

n
∑

i=1

Yi|
n

∑

i=1

Yi

]

=

n
∑

i=1

Yi,

we have

nE(Y1|
n

∑

i=1

Yi) =

n
∑

i=1

Yi.

HenceU = E(Y1|
∑n

i=1 Yi) = Y is a better unbiased estimator ofλ thanY1 or
than any ofYi. In fact,Y is a MVUE ofλ as its variance is equal to the Cramer-
Rao Lower Bound forλ. (See Example 2.12)

�

2.2.4 Complete sufficient statistics

T (Y ) is a function of random sampleY = (Y1, Y2, . . . , Yn) and so it is a random
variable as well. Hence, we may ask about the distribution ofT (Y ). For example,
assume thatσ2 is known equal toσ2

o . Then, to make inference aboutµ we may
“reduce” the random sample to its mean. We know thatT (Y ) = Y ∼ N

(

µ, σ2
o

n

)

if Yi ∼
iid

N (µ, σ2
o) and we may write

fT (t;µ|σ2
o) =

1√
2πσo

en(t−µ)2/2σ2
o .

Due to this “data reduction” we can make inference aboutµ based on the distri-
bution ofY only rather than on the multivariate distribution of the whole random
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sampleY .

A minimal sufficient statistic reduces data maximally whileretaining all the infor-
mation about the parameterϑ. We would also like such a statistic to be indepen-
dent of any so calledancillary functions of the random sample whose distributions
do not depend on the parameter of interest. Such an independent statistic is called
complete.

First, we introduce a notion of a complete family of distributions.

Definition 2.8. A family of distributionsP = {Pϑ : ϑ ∈ Θ} defined on a common
spaceY is calledcomplete if for any real measurable functionh(Y )

E[h(Y )] = 0 implies that Pϑ

(

h(Y ) = 0
)

= 1 for all ϑ ∈ Θ.

�

Note: Pϑ

(

h(Y ) = 0
)

= 1 can also be written asPϑ

(

h(Y ) 6= 0
)

= 0, which
means that functionh(Y ) may have non-zero values only on a setB ⊂ Y such
thatP (Y ∈ B) = 0. Then we say thath(Y ) = 0 almost surely inY .

Definition 2.9. A statisticT (Y ) is called complete for the familyP = {Pϑ :
ϑ ∈ Θ} onY if the family of probability distributionsPT = {Pϑ,T : ϑ ∈ Θ} is
complete for allϑ, that is,

E[h(T )] = 0 implies thatP{h(T ) = 0} = 1.

�

Example2.12. Let Y = (Y1, . . . , Yn) be a random sample from a family of
Bernoulli(p) distributions for0 < p < 1. We will show thatT (Y ) =

∑n
i=1 Yi is

a complete sufficient statistic forp.

Sufficiency The pmf of eachYi isP (Yi = yi) = pyi(1− p)1−yi and the joint pmf
for Y can be factorized as follows:

P (Y = y) =

n
∏

i=1

pyi(1− p)1−yi

= p
∑n

i=1 yi(1− p)n−
∑n

i=1 yi × 1

Hence,T (Y ) =
∑n

i=1 Yi is a sufficient statistic forp.
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CompletenessNow, we know that a sum of independent Bernoulli rvs has a Bi-
nomial distribution, i.e,

T ∼ Bin(n, p) for 0 < p < 1, t = 0, 1, . . . , n.

Let h(T ) be such thatE[h(T )] = 0. Then

0 = E[h(T )]

=

n
∑

t=0

h(t) nCtp
t(1− p)n−t

= (1− p)n
n

∑

t=0

h(t) nCt

(

p

1− p

)t

.

The factor(1− p)n 6= 0 for anyp ∈ (0, 1). Thus, it must be that

0 =

n
∑

t=0

h(t) nCt

(

p

1− p

)t

=

n
∑

t=0

h(t) nCtr
t

for all r = p
1−p

> 0. The last expression is a polynomial of degreen in r.
For the polynomial to be zero for allr the coefficientsh(t) nCt must all be
zero. It means thath(t) = 0 for all t ∈ {0, 1, . . . , n}. SinceP (T = t, t ∈
{0, 1, . . . , n}) = 1 it means thatP{h(T ) = 0} = 1 for all p. Hence,T is a
complete statistic forp.

�

The following theorem gives a connection between complete and minimal suffi-
cient statistics:

Theorem 2.6.If T (Y ) is a complete sufficient statistic for a family of distributions
with parameterϑ, thenT (Y ) is a minimal sufficient statistic for the family.

�

Exercise2.7. Suppose thatY1, Y2, . . . , Yn is a random sample from aPoisson(λ)
distribution. Show thatT (Y ) =

∑n
i=1 Yi is a complete sufficient statistic forλ.

The following Theorem establishes the minimum variance property of complete
sufficient statistics.
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Theorem 2.7.Lehmann-Scheffé Theorem.
Let Y = (Y1, Y2, . . . , Yn)

T be a random sample. IfS(Y ) is a jointly complete
sufficient statistic andT (Y ) is an unbiased estimator forφ = g(ϑ) then

U = E[T |S]

is, with probability 1, a unique MVUE ofφ.

Proof. First, to prove thatU is aMV UE of g(ϑ), we show that whatever unbi-
ased estimatorT (Y ) we take we obtain the sameE[T |S], i.e., the sameU . Then,
by Rao-Blackwell Theorem, condition (b),U must be MVUE ofg(ϑ).

Suppose thatT (Y ) andT ′(Y ) are any two unbiased estimators ofg(ϑ). Let

U = E[T |S]
U ′ = E[T ′|S].

Then we have
E{U − U ′}
= E{E[T |S]− E[T ′|S]}
= E(T )− E(T ′)

= g(ϑ)− g(ϑ)

= 0.

Hence, by completeness ofS(Y ) we get

P
[

U
(

S(Y )
)

= U ′(S(Y )
)]

= 1

for all ϑ. This proves the first part of the theorem. Now, we will show uniqueness.

Suppose thatU andT ? are two MVUE ofg(ϑ). Then ifT ? is a function of the
sufficient statisticsS(Y ) then, as shown above, it must be equal toU . If T ? is
not a function ofS(Y ) thenvar(U) < var(T ?), henceT ? cannot be a MVUE.
Hence,U is a unique MVUE ofg(ϑ).

�

Note: Lehmann-Scheffé Theorem may be used to construct MVUE of g(ϑ) by
two methods. Both are based on complete sufficient statisticsS(Y ).

• Method 1: If we can find a function ofS = S(Y ), sayU(S) such that
E[U(S)] = g(ϑ) thenU(S) is a unique MVUE ofg(ϑ).
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• Method 2: If we can find any unbiased estimatorT = T (Y ) of g(ϑ), then
U(S) = E[T |S] is a unique MVUE ofg(ϑ).

Example2.13. Method 1. LetYi ∼
iid

Bernoulli(p), i = 1, . . . , n. Earlier we

showed that
∑n

i=1 Yi is a complete sufficient statistic forp. Denote it byS(Y ).

Y = 1
n

∑n
i=1 Yi =

1
n
S(Y ) is an unbiased estimator ofp, hence, as a function of a

complete sufficient statistic, it is the unique MVUE ofp.

Now, letg(p) = var(Y ) = p(1− p). The sample variance

1

n− 1

n
∑

i=1

(Yi − Y )2

is an unbiased estimator ofg(p). It is in fact a function of the complete sufficient
statisticS(Y ) =

∑n
i=1 Yi. Hence, it is the unique MVUE ofg(p) = p(1− p).

�

Exercise2.8. Suppose thatY = (Y1, . . . , Yn)
T is a random sample from aPoisson(λ)

distribution. Find a MVUE ofφ = λ2.

2.2.5 Exponential families

There is a class of distributions, including the normal, Poisson, binomial, gamma,
chi-squared, exponential and others for which complete sufficient statistics always
exist.

Definition 2.10. A family of probability distributionsP = {Pϑ : ϑ ∈ Θ} is called
exponential if for every distribution belonging to the family, its pdf (pmf) can be
written in the form

f(y;ϑ) = h(y) exp

{

p
∑

j=1

aj(ϑ)bj(y) + c(ϑ)

}

.

�

Note: For the one-parameter exponential family, this reduces to

f(y;ϑ) = h(y) exp{a(ϑ)b(y) + c(ϑ)}.
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Example2.14. Suppose thatY ∼ Bin(m, p), wherem is known. Then we may
write

P (Y = y; p) =

(

m
y

)

py(1− p)m−y

=

(

m
y

)

exp {y log p+ (m− y) log(1− p)}

=

(

m
y

)

exp {y log p− y log(1− p) +m log(1− p)}

=

(

m
y

)

exp

{

y log

(

p

1− p

)

+m log(1− p)

}

.

Thus, we havea(p) = log{p/(1 − p)}, b(y) = y, c(p) = m log(1 − p) and

h(y) =

(

m
y

)

. Hence,P = {P (Y = y; p) : p ∈ (0, 1)} is an exponential family

of distributions.
�

Exercise2.9. Show thatP = {P (Y = y;λ) = λye−λ

y!
I{0,1,2,...} : λ > 0} is an

exponential family of distributions.

Example2.15. Suppose thatY ∼ N (µ, σ2). Then we may write

f(y;µ, σ2) =
1√
2πσ2

e−
(y−µ)2

2σ2

= exp

{

−1

2
log(2πσ2)− (y − µ)2

2σ2

}

= exp

{

− y2

2σ2
+

µy

σ2
− µ2

2σ2
− 1

2
log(2πσ2)

}

= exp

{

µ

σ2
y − 1

2σ2
y2 − µ2

2σ2
− log σ − 1

2
log(2π)

}

.

=
1√
2π

exp

{

µ

σ2
y − 1

2σ2
y2 − µ2

2σ2
− log σ

}

.

Thus, we havea1(µ, σ2) = µ/σ2, b1(y) = y, a2(µ, σ2) = −1/(2σ2), b2(y) = y2,
c(µ, σ2) = −µ2/(2σ2) − log σ andh(y) = 1√

2π
. Hence, the family of normal

distributions,P = {f(y;µ, σ2) : µ ∈ R, σ2 ∈ R
+}, is a family of exponential

distributions.
�
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Lemma 2.3. Let Y = (Y1, . . . , Yn)
T be a random sample from a distribution

belonging to an exponential family of distributions. Then,there exists a non-
trivial jointly sufficient statisticS = (S1, . . . , Sp)

T for ϑ = (ϑ1, . . . , ϑp)
T such

that

Sj =

n
∑

i=1

bj(Yi), j = 1, . . . , p. (2.3)

Proof. Note that for members of the exponential family the joint pdf(pmf) of Y
can be written as

n
∏

i=1

[

h(yi) exp

{

p
∑

j=1

aj(ϑ)bj(yi) + c(ϑ)

}]

=

[

n
∏

i=1

h(yi)

]

exp

{

n
∑

i=1

p
∑

j=1

aj(ϑ)bj(yi) + nc(ϑ)

}

=

[

n
∏

i=1

h(yi)

]

exp

{

p
∑

j=1

aj(ϑ)
[

n
∑

i=1

bj(yi)
]

+ nc(ϑ)

}

Hence, by the Neyman’s Factorization TheoremS =
(
∑n

i=1 b1(Yi), . . . ,
∑n

i=1 bp(Yi)
)T

is a jointly sufficient statistic forϑ.
�

A stronger statement, given here without proof, is following:

Theorem 2.8.Lehmann’s Theorem
If Y = (Y1, . . . , Yn)

T is a random sample from a distribution belonging to an ex-
ponential family, thenSj =

∑n
i=1 bj(Yi) for j = 1, 2, . . . , p, are the joint complete

sufficient statistics forϑ = (ϑ1, . . . , ϑp)
T.

�

From this and from Theorem 2.7 we have the following:

Corollary 2.2. If a distribution belongs to an exponential family than any func-
tion of the jointly complete sufficient statisticsS = (S1, . . . , Sp)

T, which is an
unbiased estimator ofg(ϑ), is the unique MVUE ofφ = g(ϑ).

�

Example2.16. Suppose thatYi ∼
iid

N (µ, σ2). Normal distributions belong to the

family of exponential distributions, hence from Example 2.15 and Theorem 2.8,
it follows thatS1 =

∑n
i=1 Yi andS2 =

∑n
i=1 Y

2
i are the joint complete sufficient

statistics forµ andσ2. Then,Y andS2 =
∑n

i=1(Yi − Y )2/(n− 1) are MVUEs of
µ andσ2.

�
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Exercise2.10. LetY = (Y1, . . . , Yn)
T be a random sample from a Gamma distri-

bution,Gamma(λ, α), with the following pdf

f(y;λ, α) =
λα

Γ(α)
yα−1e−λy, for y > 0.

(a) Show that the distribution belongs to an exponential family.

(b) Identify the joint complete sufficient statistics for(λ, α)T.


