Truncated Distribution

Truncated Distribution: To truncate means to cut when the domain of a distribution is truncated. We get truncated distribution.

Left Truncated Distribution.

Let $p(x)$ be the pmf of a discrete random variable X having its possible values $x=0,1,2, \ldots m, m+$ $1, m+2, \ldots$

We have,

$$
\sum_{x=0}^{\infty} p(x)=1
$$

We can write $\sum_{x=0}^{\infty} p(x)$ into two part, we get
$\sum_{x=0}^{\infty} p(x)=\sum_{x=0}^{m} p(x)+\sum_{x=m+1}^{\infty} p(x)$,

So,
$\sum_{x=0}^{m} p(x)+\sum_{x=m+1}^{\infty} p(x)=1$,
$\sum_{x=m+1}^{\infty} p(x)=1-\sum_{x=0}^{n} p(x)$,
$\frac{\sum_{x=m+1}^{\infty} p(x)}{\sum_{x=0}^{m} p(x)}=1$
$\sum_{x=m+1}^{\infty} \frac{p(x)}{1-\sum_{x=0}^{m} p(x)}=1$

This means that,
$p_{1}(x)=\frac{p(x)}{1-\sum_{x=0}^{m} p(x)}$
is a probability distribution of random variable X for $x=m+1, m+2, \ldots$.
$p_{1}(x)=\frac{p(x)}{\sum_{x=m+1}^{\infty} p(x)}, \quad x=m+1, m+2, \ldots$.

This is Left truncated $\mathrm{p}(\mathrm{x})$ distribution.

Right Truncated Distribution

Let $p(x)$ be the pmf of a discrete random variable X having its possible values $x=0,1,2, \ldots . n, n+$ $1, n+2, \ldots$

We have,
$\sum_{x=0}^{\infty} p(x)=1$,
We can write $\sum_{x=0}^{\infty} p(x)$ into two part, we get
$\sum_{x=0}^{\infty} p(x)=\sum_{x=0}^{n} p(x)+\sum_{x=n+1}^{\infty} p(x)$,

So,

$$
\begin{aligned}
& \sum_{x=0}^{n} p(x)+\sum_{x=n+1}^{\infty} p(x)=1, \\
& \sum_{x=0}^{n} p(x)=1-\sum_{x=n+1}^{\infty} p(x), \\
& \frac{\sum_{x=0}^{n} p(x)}{1-\sum_{x=n+1}^{\infty} p(x)}=1 \\
& \sum_{x=0}^{n} \frac{p(x)}{1-\sum_{x=n+1}^{\infty} p(x)}=1
\end{aligned}
$$

This means that,

$$
p_{2}(x)=\frac{p(x)}{1-\sum_{x=n+1}^{\infty} p(x)}
$$

is a probability distribution of random variable X for $x=0,1,2 \ldots . n$

$$
p_{2}(x)=\frac{p(x)}{\sum_{x=0}^{n} p(x)}, \quad x=0,1,2, \ldots \ldots, n
$$

This is Right truncated $\mathrm{p}(\mathrm{x})$ distribution.

Similar we can do with continuous distribution.

Zero- Truncated Binomial Distribution

Suppose $X \sim B(n, p)$ and we want to truncated from zero

$$
\begin{aligned}
& p_{1}(x)=\frac{{ }^{n} C_{x} p^{x} q^{n-x}}{\sum_{x=1}^{n}{ }^{n} C_{x} p^{x} q^{n-x}}, \quad x=1,2, \ldots \ldots, n \\
& =\frac{{ }^{n} C_{x} p^{x} q^{n-x}}{1-p(0)} \quad=\frac{{ }^{n} C_{x} p^{x} q^{n-x}}{1-q^{n}}, \quad x=1,2, \ldots \ldots, n
\end{aligned}
$$

This is the truncated Binomial Distribution.

Moments The $r^{t h}$ moment about origin of zero truncated Binomial distribution is obtained as,

$$
\begin{aligned}
& \mu_{r}^{\prime}=E\left(X^{r}\right)=\sum_{x=1}^{n} x^{r} p(x)=\sum_{x=0}^{n} x^{r} \frac{{ }^{n} C_{x} p^{x} q^{n-x}}{1-q^{n}}, \\
& =\frac{1}{1-q^{n}} \sum_{x=0}^{n} x^{r}{ }^{n} C_{x} p^{x} q^{n-x} \\
& =\frac{1}{1-q^{n}} \times\left(r^{t h} \text { moment about origin of Binomial Distribution. }\right)
\end{aligned}
$$

Mean $=\mu_{1}^{\prime}=E(X)=\frac{n p}{1-q^{n}}$
$\mu_{2}^{\prime}=E\left(X^{2}\right)=\frac{n(n-1) p^{2}+n p}{1-q^{n}}$
Variance $\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=\frac{n(n-1) p^{2}+n p}{1-q^{n}}-\left(\frac{n p}{1-q^{n}}\right)^{2}$

$$
\mu_{2}=\frac{n p}{1-q^{n}}\left[q+n p-\frac{n p}{1-q^{n}}\right]
$$

Similarly, we can find μ_{3}^{\prime} and μ_{4}^{\prime}. Also β_{1} and β_{2}.

Zero- Truncated Poisson Distribution

Suppose $X \sim P(\lambda)$ and we want to truncated from zero

$$
\begin{aligned}
& p_{1}(x)=\frac{p(x)}{1-p(0)}=\frac{\lambda^{x} e^{-\lambda}}{x!\left(1-\frac{\lambda^{0} e^{-\lambda}}{0!}\right)}, \quad x=1,2, \ldots \ldots, n \\
& =\frac{\lambda^{x} e^{-\lambda}}{x!\left(1-e^{-\lambda}\right)}, \quad x=1,2, \ldots \ldots, n
\end{aligned}
$$

This is the zero truncated Poisson Distribution.

Moments The $r^{t h}$ moment about origin of zero truncated Poisson distribution is obtained as,

$$
\begin{aligned}
& \mu_{r}^{\prime}=E\left(X^{r}\right)=\sum_{x=1}^{n} x^{r} p_{1}(x)=\sum_{x=0}^{n} x^{r} \frac{\lambda^{x} e^{-\lambda}}{x!\left(1-e^{-\lambda}\right)} \\
& =\frac{1}{\left(1-e^{-\lambda}\right)} \sum_{x=0}^{n} x^{r} \frac{\lambda^{x} e^{-\lambda}}{x!} \\
& =\frac{1}{\left(1-e^{-\lambda}\right)} \times\left(r^{\text {th }} \text { moment about origin of Binomial Distribution. }\right)
\end{aligned}
$$

Mean $=\mu_{1}^{\prime}=E(X)=\frac{\lambda}{\left(1-e^{-\lambda}\right)}$
$\mu_{2}^{\prime}=E\left(X^{2}\right)=\frac{\lambda^{2}+\lambda}{\left(1-e^{-\lambda}\right)}$

Variance $\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=\frac{\lambda^{2}+\lambda}{\left(1-e^{-\lambda}\right)}-\frac{\lambda^{2}}{\left(1-e^{-\lambda}\right)^{2}}$
$\mu_{2}=\frac{\lambda}{\left(1-e^{-\lambda}\right)}\left[1+\lambda-\frac{\lambda}{1-e^{-\lambda}}\right]$

Similarly, we can find μ_{3}^{\prime} and μ_{4}^{\prime}. Also β_{1} and β_{2}.

References

- S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Sons.
- A. Kumar, A. Chaudhary, Probability Distribution \& Theory of Attributes, Krishna's Educational Publishers.
- A. Kumar, A. Chaudhary, Probability Distribution \& Numerical Analysis, Krishna's Educational Publishers.
- A. M. Mood, F.A. Graybill, D.C. Boes, Introduction to the theory of statistics, Tata McGraw-Hill Publishers.
- B. Lal, S. Arora, Introducing Probability \& Statistics, Satya Prakashan.

