Bayes Theorem

Theorem If $B_{1}, B_{2}, \ldots, B_{n}$ is a collection of mutually disjoint events and $P\left(B_{j}\right) \neq 0,(j=$ $1,2, \ldots, n)$ then for every event C which is a subset of $\cup_{j=1}^{n} B_{j}$ such that $P(C)>0$, we have

$$
P\left(B_{j} \mid C\right)=\frac{P\left(B_{j}\right) P\left(C \mid B_{j}\right)}{\sum_{j=1}^{n} P\left(B_{j}\right) P\left(C \mid B_{j}\right)}, \quad j=1,2, \ldots n
$$

Proof: Since $C \subset \cup_{j=1}^{n} B_{j}$, By using the law of total probability, we have

$$
P(C)=\sum_{j=1}^{n} P\left(B_{j}\right) P\left(C \mid B_{j}\right)
$$

By the conditional probability $P\left(C \cap B_{j}\right)=P\left(B_{j}\right) P\left(C \mid B_{j}\right)$ and also

$$
P\left(B_{j} \mid C\right)=\frac{P\left(C \cap B_{j}\right)}{P(C)}=\frac{P\left(B_{j}\right) P\left(C \mid B_{j}\right)}{\sum_{j=1}^{n} P\left(B_{j}\right) P\left(C \mid B_{j}\right)}
$$

Ex. There are two bags I and $I I$. Bag I contains 3 white and 4 black balls and Bag $I I$ contains 5 white and 6 black balls. If one ball is selected at random from one of the bags and is found to be white. Find the probability that it was drawn from bag I ?

Sol. Let E_{1} and E_{2} be the events of selecting bag I and bag $I I$ respectively.
Then $P\left(E_{1}\right)=\frac{1}{2}$ and $P\left(E_{2}\right)=\frac{1}{2}$.
Let W be the event of drawing a white ball and B be the event of drawing a black ball.
Then $P\left(W \mid E_{1}\right)=$ Probability of selecting a white ball from Bag $I=\frac{3}{7}$
Then $P\left(W \mid E_{2}\right)=$ Probability of selecting a white ball from Bag $I I=\frac{5}{11}$
By Baye's Theorem, $P\left(E_{1} \mid W\right)=\frac{P\left(E_{1}\right) \cdot P\left(W \mid E_{1}\right)}{P\left(E_{1}\right) \cdot P\left(W \mid E_{1}\right)+P\left(E_{2}\right) \cdot P\left(W \mid E_{2}\right)}$

$$
\begin{aligned}
& =\frac{(1 / 2) *(3 / 7)}{(1 / 2) *(3 / 7)+(1 / 2) *(5 / 11)} \\
& =\frac{(3 / 7)}{(3 / 7)+(5 / 11)}=\frac{33}{68}
\end{aligned}
$$

Ex. Two urns I and II contain respectively 3 white and 2 black bails, 2 white and 4 black balls. One ball is transferred from urn I to urn II and then one is drawn from the latter. It happens to be white. What is the probability that the transferred ball was white.

Sol. Define, B_{1} - Transfer a white ball from Urn I to Urn II,
B_{2} - Transfer a black ball from Urn I to Urn II.,
A - Select a white ball from Urn II.

Here $P\left(B_{1}\right)=3 / 5, P\left(B_{2}\right)=2 / 5, P\left(A \mid B_{1}\right)=3 / 7, P\left(A \mid B_{2}\right)=2 / 7$ and $P\left(B_{1} \mid A\right)=$?.
By Baye's Theorem, $P\left(B_{1} \mid A\right)=\frac{P\left(B_{1}\right) \cdot P\left(A \mid B_{1}\right)}{P\left(B_{1}\right) \cdot P\left(A \mid B_{1}\right)+P\left(B_{2}\right) \cdot P\left(A \mid B_{2}\right)}$

$$
=\frac{(3 / 5) *(3 / 7)}{(3 / 5) *(3 / 7)+(2 / 5) *(2 / 7)}=9 / 13 .
$$

Ex. There are three bags $I, I I$ and $I I I$. Bag I contains 4 white and 6 black balls, Bag $I I$ contains 6 white and 2 black balls and Bag III contains 5 white and 1 black balls. If a bag is selected at random and one ball is drawn and that found ball to be black. Find the probability that it was drawn from bag I ?

Sol. Let B_{1}, B_{2} and B_{3} be the events of selecting bag I, bag $I I$ and bag $I I I$ respectively. Then $P\left(B_{1}\right)=\frac{1}{3}, P\left(B_{2}\right)=\frac{1}{3}$ and $P\left(B_{3}\right)=\frac{1}{3}$.

Let C be the event of drawing a black ball. Then
$P\left(C \mid B_{1}\right)=$ Probability of selecting a Black ball from Bag $I=\frac{6}{10}=\frac{3}{5}$
$P\left(C \mid B_{2}\right)=$ Probability of selecting a Black ball from Bag $I I=\frac{2}{8}=\frac{1}{4}$
$P\left(C \mid B_{3}\right)=$ Probability of selecting a Black ball from Bag $I I I=\frac{1}{6}$

By Baye's Theorem,

$$
\begin{array}{r}
P\left(B_{1} \mid C\right)=\frac{P\left(B_{1}\right) \cdot P\left(C \mid B_{1}\right)}{P\left(B_{1}\right) \cdot P\left(C \mid B_{1}\right)+P\left(B_{2}\right) \cdot P\left(C \mid B_{2}\right)++P\left(B_{3}\right) \cdot P\left(C \mid B_{3}\right)} \\
=\frac{(1 / 3) *(3 / 5)}{(1 / 3) *(3 / 5)+(1 / 3) *(1 / 4)+(1 / 3) *(1 / 6)}
\end{array}
$$

$$
=\frac{(3 / 5)}{(3 / 5)+(1 / 4)+(1 / 6)}=\frac{36}{61} .
$$

Ex. There are three bags $I, I I$ and $I I I$. Bag I contains 1 white, 3 red and 2 black balls , Bag II contains 2 white, 1 red and 1 black balls and Bag III contains 4 white, 3 red and 5 black balls. If a bag is selected at random and two balls are drawn and that found both balls to be white and red. Find the probability that these both were drawn from bag I ?

Sol. Let B_{1}, B_{2} and B_{3} be the events of selecting bag I, bag $I I$ and bag $I I I$ respectively.
Then $P\left(B_{1}\right)=\frac{1}{3}, P\left(B_{2}\right)=\frac{1}{3}$ and $P\left(B_{3}\right)=\frac{1}{3}$.
Let C be the event of drawing a white and a red ball. Then
$P\left(C \mid B_{1}\right)=$ Probability of selecting a white and a red ball from Bag $I=\frac{{ }^{1} C_{1} \times{ }^{3} C_{1}}{{ }^{6} C_{2}}=\frac{1}{5}$
$P\left(C \mid B_{2}\right)=$ Probability of selecting a Black ball from Bag $I I=\frac{{ }^{2} C_{1} \times{ }^{1} C_{1}}{{ }^{4} C_{2}}=\frac{1}{3}$
$P\left(C \mid B_{3}\right)=$ Probability of selecting a Black ball from Bag $I I I=\frac{{ }^{4} C_{1} \times{ }^{3} C_{1}}{{ }^{1} 2 C_{2}}=\frac{2}{11}$
By Baye's Theorem,

$$
\begin{gathered}
P\left(B_{1} \mid C\right)=\frac{P\left(B_{1}\right) \cdot P\left(C \mid B_{1}\right)}{P\left(B_{1}\right) \cdot P\left(C \mid B_{1}\right)+P\left(B_{2}\right) \cdot P\left(C \mid B_{2}\right)++P\left(B_{3}\right) \cdot P\left(C \mid B_{3}\right)} \\
=\frac{(1 / 3) *(1 / 5)}{(1 / 3) *(1 / 5)+(1 / 3) *(1 / 3)+(1 / 3) *(2 / 11)} \\
=\frac{(1 / 5)}{(1 / 5)+(1 / 3)+(2 / 11)}=\frac{33}{118} .
\end{gathered}
$$

Assignment

Q. Bags I and II each contain 2 white and 2 black balls. 1 ball is selected from bag I and transferred to bag II. 1 Ball is drawn from bag II and found to be black. What is the probability that the transferred black was black.
Q. There are three bags $I, I I$ and $I I I$. Bag I contains 3 white and 5 black balls, Bag $I I$ contains 5 white and 1 black balls and Bag III contains 4 white and 2 black balls. If a bag is selected at random and one ball is drawn and that found ball to be white. Find the probability that it was drawn from bag $I I$?
Q. There are two bags I and $I I$. Bag I contains 4 red and 5 black balls and Bag $I I$ contains 6 red and 7 black balls. If one ball is selected at random from one of the bags and is found to be red. Find the probability that it was drawn from bag $I I$?

References

- S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Sons.
- A. Kumar, A. Chaudhary, Probability Distribution \& Theory of Attributes, Krishna's Educational Publishers.
- A. Kumar, A. Chaudhary, Probability Distribution \& Numerical Analysis, Krishna's Educational Publishers.
- K.S. Negi, Biostatistics, Aitbs Publishers.
- V.B. Rastogi, Fundamentals of Biostatistics, ANE Books.

