Fourth Order Runge-Kutta Method and its C Programming

Course: MPHYCC-05 Modeling and Simulation, MPHYCC-09 Lab-II (M.Sc. Sem-II)

By

Dr. Sanjay Kumar

Assistant Professor
Department of Physics
Patna University
Contact Details: Email- sainisanjay35@gmail.com;
Contact No.- 9413674416

$4^{\text {th }}$ Order Runge-Kutta Method

To understand the $4^{\text {nd }}$ order Runge Kutta method, we once again consider the typical first order differential equation:

$$
\frac{d y}{d x}=f(x, y) \text { with the initial condition } y\left(x=x_{1}\right)=y_{1}
$$

Now let's assume h to be the equidistance value of x, i.e.,

$$
\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h} ; \mathrm{x}_{3}=\mathrm{x}_{2}+\mathrm{h} ; \ldots . . \quad ; \mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+\mathrm{h}
$$

Figure: The figure geometrically illustrates $4^{\text {th }}$ order Runge-Kutta method.

To understand the $4^{\text {th }}$ order Runge-Kutta method refers to the above figure. To enhance the accuracy, in comparison to the $2^{\text {nd }}$ order Runge-Kutta method, here we consider additional point at $\mathrm{x}_{1}+\mathrm{h} / 2$ (which is the midpoint of x_{1} and $\mathrm{x}_{1}+\mathrm{h}$). In the $4^{\text {th }}$ order Runge-Kutta method, we do the following steps:

1. First of all, we calculate the slope $s_{1}=f\left(x_{1}, y_{1}\right)$ of the solution curve $y(x)$ at point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) (point A in the figure). Then, lets draw a straight line from the initial point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) with the slope s_{1}.
2. Lets assume that the straight line cuts the vertical line through $\mathrm{x}_{1}+\mathrm{h} / 2$ at ($\mathrm{x}_{1}+\mathrm{h} / 2, \mathrm{y}_{2}^{\prime}$) (point B in the figure).
Note that by definition $\mathrm{s}_{1}=\left(\mathrm{y}_{2}^{\prime}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{1}+\mathrm{h} / 2-\mathrm{x}_{1}\right)=\left(\mathrm{y}_{2}{ }^{\prime}-\mathrm{y}_{1}\right) /(\mathrm{h} / 2)$. This implies that $\mathrm{y}_{2}{ }^{\prime}=\mathrm{y}_{1}+\mathrm{s}_{1} \mathrm{~h} / 2$.
Determine the slope of the solution curve $\mathrm{y}(\mathrm{x})$ at the point B . This is given by $\mathrm{s}_{2}=\mathrm{f}\left(\mathrm{x}_{1}+\mathrm{h} / 2, \mathrm{y}_{1}+\mathrm{s}_{1} \mathrm{~h} / 2\right)$.
3. Go back to the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and draw a straight line with the slope s_{2}. Lets assume that the straight line cuts the vertical line through $\mathrm{x}_{1}+\mathrm{h} / 2$ at ($\mathrm{x}_{1}+\mathrm{h} / 2, \mathrm{y}_{2}$ ") (point C in the figure).
Note that by definition $\mathrm{s}_{2}=\left(\mathrm{y}_{2}{ }^{\prime \prime}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{1}+\mathrm{h} / 2-\mathrm{x}_{1}\right)=.\left(\mathrm{y}_{2}{ }^{\prime \prime}-\mathrm{y}_{1}\right) /(\mathrm{h} / 2)$ This implies that $\mathrm{y}_{2}{ }^{\prime \prime}=\mathrm{y}_{1}+\mathrm{s}_{2} \mathrm{~h} / 2$.
Determine the slope of the solution curve $\mathrm{y}(\mathrm{x})$ at the point C . This is given by $\mathrm{s}_{3}=\mathrm{f}\left(\mathrm{x}_{1}+\mathrm{h} / 2, \mathrm{y}_{1}+\mathrm{s}_{2} \mathrm{~h} / 2\right)$.
4. Go back to the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and draw a straight line with the slope s_{3}. Lets assume that the straight line cuts the vertical line through $\mathrm{x}_{1}+\mathrm{h}$ at ($\mathrm{x}_{1}+\mathrm{h}, \mathrm{y}_{2}{ }^{\prime \prime}$) (point D in the figure).
Note that by definition $s_{3}=\left(y_{2}{ }^{\prime \prime \prime}-y_{1}\right) /\left(x_{1}+h-x_{1}\right)=.\left(y_{2}^{\prime \prime \prime}-y_{1}\right) /(h)$ This implies that $y_{2}{ }^{\prime \prime \prime}=y_{1}+s_{3} h$.
Determine the slope of the solution curve $\mathrm{y}(\mathrm{x})$ at the point D . This is given by $\mathrm{s}_{4}=\mathrm{f}\left(\mathrm{x}_{1}+\mathrm{h}, \mathrm{y}_{1}+\mathrm{s}_{3} \mathrm{~h}\right)$.
5. Now, go back to the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and draw a straight line with a slope $\mathrm{s}=\left(\mathrm{s}_{1}+2 \mathrm{~s}_{2}+2 \mathrm{~s}_{3}+\mathrm{s}_{4}\right) / 6$. In the $4^{\text {nd }}$ order Runge-Kutta method, the point y_{2} (point E in the figure), where this straight line cuts the vertical line $\mathrm{x}_{1}+\mathrm{h}$, is the approximate solution of the considered differential equation at the point $\mathrm{x}_{1}+\mathrm{h}$. By definition of the slope:

$$
\begin{aligned}
& \mathrm{s}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) / \mathrm{h} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{h} \mathrm{~s}
\end{aligned}
$$

$$
\mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{h}\left(\mathrm{~s}_{1}+2 \mathrm{~s}_{2}+2 \mathrm{~s}_{3}+\mathrm{s}_{4}\right) / 6
$$

where $s_{1}=f\left(x_{1}, y_{1}\right), s_{2}=f\left(x_{1}+h / 2, y_{1}+s_{1} h / 2\right), s_{3}=f\left(x_{1}+h / 2, y_{1}+s_{2} h / 2\right)$ and $s_{4}=f\left(x_{1}+h, y_{1}+s_{3} h\right)$.

In general, the $(\mathrm{i}+1)^{\mathrm{th}}$ is obtained from the $\mathrm{i}^{\text {th }}$ point using the formula:

$$
y_{i+1}=y_{i}+h\left(s_{1}+2 s_{2}+2 s_{3}+s_{4}\right) / 6
$$

where $s_{1}=f\left(x_{i}, y_{i}\right), s_{2}=f\left(x_{i}+h / 2, y_{i}+s_{1} h / 2\right), s_{3}=f\left(x_{i}+h / 2, y_{i}+s_{2} h / 2\right)$ and $s_{4}=f\left(x_{i}+h, y_{i}+s_{3} h\right)$.

Assignment

Solve the differential equation using Runge-Kutta $4^{\text {th }}$ order method

$$
\frac{d y}{d x}=-y
$$

find y for $x \varepsilon[0,2]$ with the initial condition $y(x=0)=y_{0}=1$.

Algorithm to Write a Program of the Runge-Kutta $4^{\text {th }}$ order method

Problem: $\quad \frac{d y}{d x}=f(x, y)$ with the initial condition $y\left(x=x_{0}\right)=y_{0}$ find $y(x)$ for $x_{0}<x<L$

1. Input x_{0}, L, y_{0}, n
2. $h=\left(x_{n}-x_{0}\right) / n$
3. Do iteraction ($i=1, n$)

$$
\begin{aligned}
& \left\{s_{1}=h * f\left(x_{0}, y_{0}\right)\right. \\
& x_{1}=x_{0}+h ; \\
& x_{m}=x_{0}+h / 2 ;
\end{aligned}
$$

```
\(s_{2}=h * f\left(x_{m}, y_{0}+s_{1} / 2\right)\)
\(s_{3}=h * f\left(x_{m}, y_{0}+s_{2} / 2\right)\)
\(s_{4}=h * f\left(x_{1}, y_{0}+s_{3}\right)\)
    \(y_{1}=y_{0}+(1 / 6) *\left(s_{1}+2 * s_{2}+2 * s_{3}+s_{4}\right)\)
    write \(x_{1}, y_{1}\)
    \(y_{0}=y_{1}\)
    \(\left.x_{0}=x_{1}\right\}\)
```

4. end

C- Program of the Runge-Kutta $2^{\text {nd }}$ order method

Problem: $\quad \frac{d y}{d x}=-y$ with the initial condition $y(x=0)=1$ find $y(x)$ for $0<x<2$

```
#include <stdio.h>
#include <math.h>
int main()
{float k1, k2, k3, k4, x0, l, y0, h, x1, y1, xm;
int n,i;
printf("enter the value of n \n");
scanf("%d",&n);
printf("enter the initial point x0, last point L and initial condition y0:\n");
scanf("%f %f %f",&x0,&l,&y0);
```

$$
\mathrm{h}=(\mathrm{l}-\mathrm{x} 0) / \mathrm{n} ;
$$

$$
\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++)
$$

$$
\{\mathrm{x} 1=\mathrm{x} 0+\mathrm{h}
$$

$$
\mathrm{xm}=\mathrm{x} 0+\mathrm{h} / 2
$$

k1=-h*y0;

$$
\mathrm{k} 2=-\mathrm{h} *(\mathrm{y} 0+\mathrm{k} 1 / 2)
$$

$$
\mathrm{k} 3=-\mathrm{h} *(\mathrm{y} 0+\mathrm{k} 2 / 2)
$$

$$
\mathrm{k} 4=-\mathrm{h} *(\mathrm{y} 0+\mathrm{k} 3)
$$

$$
\mathrm{y} 1=\mathrm{y} 0+(1.0 / 6.0) *(\mathrm{k} 1+2 * \mathrm{k} 2+2 * \mathrm{k} 3+\mathrm{k} 4)
$$

$$
\text { printf("x[\%d] and y[\%d]:\%f\t\t\%f } \backslash \mathrm{n} ", \mathrm{i}, \mathrm{i}, \mathrm{x} 1, \mathrm{y} 1) \text {; }
$$

$$
x 0=x 1 ;
$$

$$
\mathrm{y} 0=\mathrm{y} 1 ;\}
$$

```
return 0;}
```


Output of the program:

```
enter the value of n
5
enter the initial point x0, last point L and initial condition y0:
021
\begin{tabular}{ll}
\(\mathrm{x}[1]\) and \(\mathrm{y}[1]: 0.400000\) & 0.670400 \\
\(\mathrm{x}[2]\) and \(\mathrm{y}[2]: 0.800000\) & 0.449436 \\
\(\mathrm{x}[3]\) and \(\mathrm{y}[3]: 1.200000\) & 0.301302 \\
\(\mathrm{x}[4]\) and \(\mathrm{y}[4]: 1.600000\) & 0.201993 \\
\(\mathrm{x}[5]\) and \(\mathrm{y}[5]: 2.000000\) & 0.135416
\end{tabular}
```


C- Program of the Runge-Kutta $4^{\text {th }}$ order method using 1D Array

Problem: $\quad \frac{d y}{d x}=-y \quad$ with the initial condition $\quad y(x=0)=1$ find $y(x)$ for $0<x<2$
\#include <stdio.h>
\#include <math.h>
int main()
\{float k1[100],k2[100],k3[100], k4[100], x[100],y[100],y1[100],h,xm[100]; int n,i;
printf("enter the value of n and $\mathrm{h} \backslash \mathrm{n}$ ");
scanf("\%d\%f",\&n,\&h);
printf("enter the value of $x[1]$ and $y[1]: \backslash n ") ;$
scanf("\%f\%f",\&x[1],\&y[1]);

```
for(i=1;i<=n+1;i++)
{k1[i]=-h*y[i];
x[i+1]=x[i]+h;
xm[i+1]=x[i]+h/2;
k2[i]=-h*(y[i]+0.5*k1[i]);
k3[i]=-h*(y[i]+0.5*k2[i]);
k4[i]=-h*(y[i]+k3[i]);
y[i+1]=y[i]+(1.0/6.0)*(k1[i]+2*k2[i]+2*k3[i]+k4[i]);}
```

for $(\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n}+1 ; \mathrm{i}++$)
printf("x[\%d] and y[\%d]:\%f \%f nn ",i,i,x[i],y[i]);
return $0 ;$ \}

Output of the program:

enter the value of n and h
50.4
enter the value of $\mathrm{x}[1]$ and $\mathrm{y}[1]$:
01
$x[2]$ and $y[2]: 0.4000000 .670400$
$\mathrm{x}[3]$ and $\mathrm{y}[3]: 0.8000000 .449436$
$\mathrm{x}[4]$ and $\mathrm{y}[4]: 1.2000000 .301302$
$x[5]$ and $y[5]: 1.6000000 .201993$
$x[6]$ and $y[6]: 2.0000000 .135416$

