$\mathbf{2}^{\text {nd }}$ Order Runge-Kutta Method and its C-programming

Course: MPHYCC-05 Modeling and Simulation, MPHYCC-09 Lab-II (M.Sc. Sem-II)

By

Dr. Sanjay Kumar

Assistant Professor Department of Physics

Patna University
Contact Details: Email- sainisanjay35@gmail.com;
Contact No.- 9413674416

Runge-Kutta Methods

Consider the typical differential equation:

$$
\frac{d y}{d x}=f(x, y) \text { with the initial condition } y\left(x=x_{0}\right)=y_{0} .
$$

Our aim is to find out $\mathrm{y}(\mathrm{x})$ on a descretized space.
From the Euler's method (discussed in the previous lecture), the solution is given as:

$$
\left.y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right) \quad \text { (here we use the notations: } x(i)=x_{i}, y(i)=y_{i}\right)
$$

where $\mathrm{h}=\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}$

$$
y_{i+1}=y_{i}+h y_{i}^{\prime} \quad \text { with } y_{i}^{\prime}=f\left(x_{i}, y_{i}\right)
$$

We can derive the above formula from the Taylor's series expansion;

$$
y_{i+1}=y\left(x_{i+1}+h\right)=y_{i}+h y_{i}^{\prime}+\left(h^{2} / 2\right)\left(y_{i}^{\prime \prime}\right)+\ldots
$$

Only considering first order term:

$$
y_{i+1}=y\left(x_{i+1}+h\right)=y_{i}+h y_{i}^{\prime}=y_{i}+h f\left(x_{i}, y_{i}\right)
$$

Thus the Euler's method is first order accurate because we neglect the higher order term of the Taylor's series which leads to the trucation error $\sim \mathrm{O}\left(\mathrm{h}^{2}\right)$. As a result, sometime the Euler's method is known as first order Runge-Kutta Method.

To understand the $2^{\text {nd }}$ order Runge Kutta method, we once again consider the typical first order differential equation:

$$
\frac{d y}{d x}=f(x, y) \text { with the initial condition } y\left(x=x_{1}\right)=y_{1}
$$

Now let's assume h to be the equidistance value of x, i.e.,

$$
\mathrm{x}_{2}=\mathrm{x}_{1}+\mathrm{h} ; \mathrm{x}_{3}=\mathrm{x}_{2}+\mathrm{h} ; \ldots . . ; \mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+\mathrm{h}
$$

Figure: The figure geometrically illustrates $2^{\text {nd }}$ order Runge-Kutta method.

To understand the $2^{\text {nd }}$ order Runge-Kutta method refers to the above figure. First of all, we calculate the slope $s_{1}=f\left(x_{1}, y_{1}\right)$ of the solution curve $y(x)$ at point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$. Then, lets draw a straight line from the initial point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with the slope s_{1}. Lets assume that the straight line cuts the vertical line through $x_{1}+h$ at $\left(\mathrm{x}_{1}+\mathrm{h}, \hat{\mathrm{y}}_{2}\right)$. Note that by definition $\mathrm{s}_{1}=\left(\hat{\mathrm{y}}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\left(\hat{\mathrm{y}}_{2}-\mathrm{y}_{1}\right) / \mathrm{h}$. This implies that $\hat{\mathrm{y}}_{2}=\mathrm{y}_{1}+\mathrm{s}_{1} \mathrm{~h}$.

Now, determine the slope of the solution curve $\mathrm{y}(\mathrm{x})$ at the point $\left(\mathrm{x}_{1}+\mathrm{h}, \hat{\mathrm{y}}_{2}\right)$. This is given by $s_{2}=f\left(x_{1}+h, \hat{y}_{2}\right)=f\left(x_{2}, y_{1}+s_{1} h\right)$. Now, go back to the point $\left(x_{1}, y_{1}\right)$ and
draw a straight line with a slope $s=\left(s_{1}+s_{2}\right) / 2$. In the $2^{\text {nd }}$ order Runge-Kutta method, the point y_{2}, where this straight line cuts the vertical line $x_{1}+h$, is the approximate solution of the considered differential equation at the point $\mathrm{x}_{1}+\mathrm{h}$. By definition of the slope:

$$
\begin{aligned}
& \mathrm{s}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) / \mathrm{h} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{h} \mathrm{~s} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}+\mathrm{h}\left(\mathrm{~s}_{1}+\mathrm{s}_{2}\right) / 2
\end{aligned}
$$

where $s_{1}=f\left(x_{1}, y_{1}\right)$ and $s_{2}=f\left(x_{2}, y_{1}+s_{1} h\right)$.
In general, the $(\mathrm{i}+1)^{\text {th }}$ is obtained from the $\mathrm{i}^{\text {th }}$ point using the formula:

$$
y_{i+1}=y_{i}+h\left(s_{i}+s_{i+1}\right) / 2
$$

where $s_{i}=f\left(x_{i}, y_{i}\right)$ and $s_{2}=f\left(x_{i+1}, y_{i}+s_{i} h\right)$.
This method is also known as Heun's method. Thus the Runge-Kutta $2^{\text {nd }}$ order method is second-order accurate i.e., from the Taylor's series expansion we can show that the trucation error $\sim \mathrm{O}\left(\mathrm{h}^{3}\right)$.

Assignment

Solve the differential equation using Runge-Kutta $2^{\text {nd }}$ order method

$$
\frac{d y}{d x}=-y
$$

find y for $x \varepsilon[0,2]$ with the initial condition $y(x=0)=y_{0}=1$.

Algorithm to Write a Program of the Runge-Kutta $2^{\text {nd }}$ order method

Problem: $\quad \frac{d y}{d x}=f(x, y)$ with the initial condition $y\left(x=x_{0}\right)=y_{0}$ find $y(x)$ for $x_{0}<x<L$

1. Input x_{0}, L, y_{0}, n
2. $h=\left(x_{n}-x_{0}\right) / n$
3. Do iteraction $(i=1, n)$
$\left\{s_{1}=h * f\left(x_{0}, y_{0}\right)\right.$
$x_{1}=x_{0}+h$;
$s_{2}=h * f\left(x_{1}, y_{0}+s_{1}\right)$
$y_{1}=y_{0}+0.5^{*}\left(s_{1}+s_{2}\right)$
write x_{1}, y_{1}
$y_{0}=y_{1}$
$\left.x_{0}=x_{1}\right\}$
4. end

C- Program of the Runge-Kutta $2^{\text {nd }}$ order method

Problem: $\quad \frac{d y}{d x}=-y$ with the initial condition $y(x=0)=1$ find $y(x)$ for $0<x<2$
\#include <stdio.h>
\#include <math.h>
int main()
\{float k1, k2, x0, l, y0, h, x1, y1;
int n,i;
printf("enter the value of $n \backslash n$ ");
scanf("\%d",\&n);
printf("enter the initial point x0, last point L and initial condition y0:\n");
scanf("\%f \%f \%f",\&x0,\&l,\&y0);
$\mathrm{h}=(\mathrm{l}-\mathrm{x} 0) / \mathrm{n}$;

```
for \((\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++\) )
\{x1=x0+h;
k1=-h*y0;
k2=-h*(y0+k1);
\(\mathrm{y} 1=\mathrm{y} 0+0.5^{*}(\mathrm{k} 1+\mathrm{k} 2)\);
printf("x[\%d] and y[\%d]:\%f\t\t\%f \(\backslash n ", i, i, x 1, y 1)\);
\(\mathrm{x} 0=\mathrm{x} 1\);
\(y 0=y 1 ;\}\)
```

return $0 ;$ \}

Output of the program:

```
enter the value of n
5
enter the initial point x0, last point L and initial condition y0:
021
x[1] and y[1]:0.400000 0.680000
x[2] and y[2]:0.800000 0.462400
x[3] and y[3]:1.200000 0.314432
x[4] and y[4]:1.600000 0.213814
x[5] and y[5]:2.000000 0.145393
```


C- Program of the Runge-Kutta $2^{\text {nd }}$ order method using 1D Array

Problem: $\quad \frac{d y}{d x}=-y$ with the initial condition $y(x=0)=1$ find $y(x)$ for $0<x<2$
\#include <stdio.h>
\#include <math.h>
int main()
\{float k1[100],k2[100],x[100],y[100],y1[100],h;
int n,i;
printf("enter the value of n and $\mathrm{h} \backslash \mathrm{n}$ ");
scanf("\%d\%f",\&n,\&h);
printf("enter the value of $x[1]$ and $y[1]: \backslash n ") ;$
scanf("\%f\%f",\&x[1],\&y[1]);
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}+1 ; \mathrm{i}++)$
$\{k 1[i]=-h * y[i] ;$
$x[i+1]=x[i]+h ;$
$y[i+1]=y[i]+k 1[i] ;$
k2[i]=-h*y[i+1];
$\left.y[i+1]=y[i]+0.5^{*}(k 1[i]+k 2[i]) ;\right\}$
for $(\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n}+1 ; \mathrm{i}++$)
printf("x[\%d] and y[\%d]:\%f \%f nn ",i,i,x[i],y[i]);
return $0 ;\}$

Output of the program:

enter the value of n and h
$5 \quad 0.4$
enter the value of $\mathrm{x}[1]$ and $\mathrm{y}[1]$:
01
$x[2]$ and $y[2]: 0.4000000 .680000$
$x[3]$ and $y[3]: 0.8000000 .462400$
$\mathrm{x}[4]$ and $\mathrm{y}[4]: 1.2000000 .314432$
$x[5]$ and $y[5]: 1.6000000 .213814$
$x[6]$ and $y[6]: 2.0000000 .145393$

