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               Fermi theory of beta decay (previous class)

           | ψi >                                                                  | ψf >                    

Initial state represents                                   Final state represents the 
the state vector/ wave                                    combined state vector/wave
function of parent nucleus                             function of duaghter nucleus  
                                                                       and decay particles (beta  
                                                                       particles and neutrinos)         

The transition probability (rate) for the decay is:
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ℏ
|H if

p
|
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where the matrix elements H if
p=∫ψf

∗ H pψi d τ with Hp representing the
interaction potential responsible for beta decay.  

The matrix elements modify as:

                        H if
p
=∫ψd

∗
ψe

∗
ψν

∗ H p
ψp d τ          

The  wave  functions  of  beta  particle  and  neutrino  have  the  usual  free
particle’s wave function form normalized within the volume V (which is
nuclear volume for beta decay case).  
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Under the approximation of 
p r
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≪1 ,  
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This approximation is known as the allowed approximation. 
 
Now,  the matrix element:
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p=

1
V
∫ψd

∗ H p ψp d τ
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p
=
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M if                              ---------- (10)

where  M if =∫ψd
∗ H p ψp d τ  is known as  nuclear matrix elements as

only  the waves of parent and daughter nucleus involve in the expression. 

Now, the updated the expression of transition rate 
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Then,  the  total  number  of  final  states  which  have  simultaneously  an
electron and a neutrino (confined in spatial volume V) with momenta p to
p+dp and q to q+dp are: 
                                        

                               dn=
(4 π)2 V 2 p2 dpq2 dq

h6          
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   ----------- (1)

This much we discussed in the previous class. 

Nuclear Matrix elements (Mif) can treated as constant becuase, we
can consider  the  nuclear  potentials  for  the parent  and duaghter
nuclei  are time independent. 

Now, we notice that, energy of final quantum states (E f) can be
given as:
 
                                 Ef  = Ee + Eν              --------- (2)

where Ee is total reletivistic energy of electron while Eν is for neutrino. 

         Ee  = me c2 + K    (K is kinetic energy of electrons) ----(3)
          
and    Eν

2
   =  q2

 c2 + mν
2 c4         (q is momentum of neutrino)

As neutrino mass can approximated to zero,

               Eν
2

   =  q2
 c2 

 
                Eν   =  q c                       --------  (4)

Using equations (3) and (4) into (2), we get

                      Ef  = me c2 + K +  q c 

                              dEf  = c dq  
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                         --------- (5)

Use this result in equation (1), we get 
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                                 λ=C0 q2 p2 dp                      ----------- (6)

where C0=
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h6 c
 is assumed to be constant as Mif is

taken to be constant.

Now note that λ in equation (6) represents the probibility (per unit
time) of the system to make transition from initial state to final
state. In other words, it  tells us the probibility of an nucleus to
undergo beta decay per unit time. 
In the same sense, we can say that  λ provides us the number of
beta particles having momentum p to p+dp and given by N(p) dp: 

                                  N ( p)dp=C0 q2 p2 dp          ---------- (7)



To  relate  this  above  theoritical  expression  with  exprimental
results, we need to write it in the form of kinetic energy of beta
particles. For that, 
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  --------(8)
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Moreover, from the previous lectures, we know that Q-value in
beta decay is shared in the form of kinetic energy of beta particle
and energy of neutrino. Therefore, 
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From equation (9) 

                                    p=
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Use eqautions (10) into equation (7), we get 

                                 N ( p)dp=C0 q2 p2 dp
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(Q−K )
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Using  expression  of  K  written  in  equation  (8)  in  the  above
equation, we get 
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N(p)  provides  the  number  of  beta  particles  emitted  with
momentum p. This is the distributation of beta particles in terms of
their momentum. Next, we would like to write the distributation in
terms of their kinetic energy. 



For the distributation in terms of energy, we use equation (9), (10)
and (11) in equation (7) {i.e., we replace both the momenta p and
q in terms of K}

                          N ( p)dp=C0 q2 p2 dp

As momenta q and p are  replaced by energy,  N(p)dp also gets
replaced by N(K)dK which represents of number of beta particles
having kinetic energy K to K+dK.
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    N (K )dK=C1(Q−K )2√K (K+2me c2)(K +me c2)dK

       N (K )=C1(Q−K )2√K (K +2me c2)(K+me c2)    ----(11)

This distributation is called the Fermi-expression in terms of the
kinetic  energy.  The  distributation  provides  the  number  of  beta
particles those emitted with kinetic energy K. 

       N (K )=C1(Q−K )2√K (K +2me c2)(K+me c2)

Note that for K=0 and K=Q,  N(K)=0 => It means that number
of beta particles having kinetic energy 0 and Q is zero. And if 
we  plot  the  N(K)  vs.  K,  we  obtain  a  continuous  energy
distributation.  



If plot N(K) vs. K for Q=2.5 MeV, we obtain following curve:

       N(K)

 
                                                     K                                    Q             
 
                                          (Plot from Fermi theory)

Now, if we see the experimentally obtained plots: 

                 N(K)   

                                                        K                           Q



                    N(K)

 
                                                                 K                              Q
                                                                                                 
There are differences between the plot obtained from theory and
experimental plot. The different is more evident in the case of  β-

decay. 
These  differences  originate  because  we  didn’t  consider  the
Coulomb interaction between the beta particle and the daughter
nucleus. 

Classically.  we  can  interpret  the  shapes  of  the  experimentally
obtained energy distributions  as a Coulomb repulsion of β+ by the
nucleus,  giving  fewer  low-energy  positrons,  and  a  Coulomb
attraction of β-, giving more low-energy electrons.

From  the  more  accurate  calculations,  we  should  use  quantum
mechanics to study the change in the electron/positron plane wave
under  the  nuclear  Coloumb  potential.  It  modifies  the  energy
spectrum/distributation  by  introducing  an  additional  factor,  the
Fermi function F(Z’,  K) where Z’  is atomic number of daughter
nucleus. 



   N (K )=C1 F(Z ' , K )(Q−K )2√K (K +2 me c2)(K +me c2)

This explains the exprimentally obtained energy spectrum of beta
spectrum. 

Furthermore, in some cases, we need to include the effect of the
nuclear matrix element Mif, which we have up to now constant and
assumed  not  to  influence  the  shape  of  the  spectrum.  This
approximation  (also  called  the  allowed approximation)  is  often
found to be a very good one. but there are some decays in which it
doesn’t work. Such decays are known as forbidden dicay. 

So overall, we have

N (K )∝F (Z ' , K )(Q−K )2√K (K+2me c2)(K +me c2)|M if|
2

Just  for  the  book-keeping,  if  we  utilize  the  momentum
distributation N(p) written in equation 11(a), we can get

                  N ( p)∝ p2(Q−K )2 F (Z ' , p)|M if|
2

Under allowed approximation,  Mif can also be taken constant then
the above relation can be written as:

                       (Q−K )∝√ N ( p)

p2 F (Z ' , p)



Note that Plot √ N ( p)

p2 F (Z ' , p)
and K will be a straight line which

intercepts the x-axis at the decay energy Q. Such a plot is called a
Kurie plot (sometimes a Fermi plot or a Fermi-Kurie plot).



              Thanks for the attention!


