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Power Radiated by an Accelerated Point Charge 

To calculate the power radiated by a point charge moving with an arbitrary velocity v
(hence,  having  non-zero  acceleration  a),  from  previous  lectures,  we  recall  the
expressions  of  electric  (E) and magnetic  (B) field  generated  by the  point  charge
moving on a trajectory w(t) as shown in figure 1:

   ---- (1)

                  
                         ----- (2)

where 

 
                                                � = r – w(tr) 

and               retarded time     tr = t - |r-w(tr)|/c = t -  � /c

                                                 Figure 1

As mentioned in the previous lecture note, the first term in equation (1) is known as
“Coulomb field” or “velocity field” while the second term is called as “radiation 
field” or “acceleration field”. 



To calculate the power radiated by the point charge, first of all we need to find an
expression for the Poynting vector:  
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From the discussions of the previous lecture, we recall that the second term of electric
field (called as radiation field and was denoted by Er) in equation (1) is proportional
to (1/� )  and,  therefore,  Er

2  is  proportional  to (1/�2 ).  Because of  this,  Er
2   doesn’t

vanish at large distances and contribute to the radiation. In contrast, the first term of
electric  field   Ec (coulomb or  velocity  field)  has  the  dependency  of  (1/�2 )  and
therefore Ec

2 vanishes at large distances. Because of these arguments, in equation (3)
we only need to consider the radiation field: 
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So, now from equation (3), the Poynting flux responsible for the radiation can be
given as:
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From equation (4), we note that the Er  is perpendicular to  � because the expression of
Er involves a vector triple product of vectors �,  u, and a. Hence,  Er  and  � normal to
each other and, hence equation (5) modifies as: 
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From equation (4), we can rewrite the expression of Er as: 
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Now, under the non-relativistic limit v<<c, u=c�^ - v can be approximated as  u=c�^.
Then,  .u � = � c and using this in equation (7), we get
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Use the expression of Er from equation (8) into equation (6) to calculate the Poynting
flux: 
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If the angle between  � and a is θ then
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To calculate the power, from the previous lecture, we know that the power radiated
by the point charge is given by

                                                   P=∮Sr .d a                          ------ (10)           



To calculate the above integral or the power radiated by the charge particle at the
retarded time tr, we draw a sphere of large radius � (as shown in figure 2) and consider
that the particle is situated at the origin of the sphere at time tr. The power radiated by
the particle travels with the speed of light (c) and takes �/c time to reach the surface
of the sphere and, at this moment, we integrate the Poynting flux over the surface for
calculating the power (as documented in equation (10)). 

 

                                                            Figure 2
                                

Now using the expression of  Sr  from equation (9) and area element for a spherical
surface da = �2 sinθ dθdΦ �^ in equation (10) we get: 
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This is the expression of power radiated by a charged particle moving with a low
velocity (v<<c).  This is also called the Larmor formula. Please note that the power
only depends on the charge of the particle and the acceleration of the particle. With an
increase in acceleration of a charged particle, the power radiated by the particle also
enhances. 



Angular distributation of the radiation:

To understand the angular distributation of the power radiated by a charged particle,
we again consider equation (11): 
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We know that differential solid angle element dΩ = sinθdθdΦ (see figure 3), 

                                                          Figure 3

Then, equation (13) can be rewritten as: 
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The above equation determines the power radiated in per unit solid angle and, hence,
represents the angular distributation of the power radiated by the charged particle.
Note that power radiated in the forward and backward direction of the motion of the



particle is zero because for the forward direction  θ =00 and the backward direction
θ=1800. 
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                                                               Figure 4 

Maximum power  is  radiated  in  the  perpendicular  direction  of  the  motion  of  the
charged  particle  because   θ=900.  In  three-dimension  (3D),  most  of  the  power  is
radiated in the donut shape (see figure 5) about the direction of motion of the charged
particle (or the instantaneous direction of acceleration). 

                                                                 Figure 5
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