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--------------------------------------------------------------------------------
         Key results of Time-dependent perturbation theory

In  time-dependent  perturbation  theory,  we  split  the  Hamiltonian  of  a
quantum system into two parts. First part is time independent H0 and other
is time dependent V (t) such that V (t) is small compared to H0

                                                                H = H0 + V(t)

Because  of  the  time  dependent  perturbing  hamiltonian,  the  system can
make transition from its initial state to some final state. 
Example:  An atom is placed under the influence of an electromagnetic
wave (oscillating electric field).  Electrons experience oscillatory electric
force and therefore the Hamiltonian becomes time-dependent.  This may
lead to transition of atom from ground state to possible excited states. 

First order transition rate (Wif) for the transition from the initial state | ψi >
to continuum final state | ψf > is written as follows.  

                | ψf >
        (continuum)

                 | ψi >
                                   

     Fermi’s Golden
               rule

where in descrete basis, V if =⟨ψf|V̂|ψi ⟩ represent the matrix elements of
the  perturbing  hamiltonian.  In  position  (continuous)  basis,  the  matrix
elements are given as ⟨ ψf|V̂|ψi ⟩=∫ψf

∗V ψi d τ

Note that transition rate represents the transition probability per unit time. 
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Here ρ (Ef ) represents the density of final states. It is the number of states
per unit energy interval at Ef. 

Few points to keep in mind: 

1. Density of states must be included for the following reason: if the final
state Ef is a single isolated state, then the decay probability will be much
smaller than it would be in the case that there are many states in a narrow
band near Ef. If there is a large density of states near Ef , there are more
possible final states that can be reached by the transition and thus a larger
transition probability. 

2.  In  beta  decay process,  the  beta  particle  and neutrino behave as  free
particles and therefore lead to large number of final quantum states.

3. Even though a system may make a transition from an initial energy state
Ei to a final state Ef, energy must be conserved. Thus the total decay energy
must be constant. If the final state Ef is of lower energy than Ei,. the energy
difference  Ei  -Ef;  must  appear  as  radiation  emitted  in  the  decay.  In
transitions between atomic or nuclear excited states, a photon is emitted to
carry the energy Ei -Ef.

4. The transition rate is directly associated with the decay constant λ
which also represent the probability of decaying any atom at a given
instant of time. And from λ, one can obtain the average life and half-
life.  

------------------------------------------------------------------------------------
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                     Fermi theory of beta decay 

In  1934,  Fermi  formulated  a  successful  theory  of  beta  decay  which  is
based on Pauli's neutrino hypothesis. Fermi theory provides an expression
for the transition probability (or rate) for beta decay.  

The theory is based on following considerations: 

1.  The electron and neutrino do not exist before the decay process, and
     therefore the theory must account for the formation of those particles.

2. The electron and neutrino must be treated relativistically.

3. The continuous distribution of electron energies must result from the
    calculation.

4.   An interaction  causing  beta  decay  is  weak  compared  with  the
interaction that forms the quasi-stationary states. In other words, the
(time-dependent) potential resposible for beta decay is small compared
to  the  nuclear potential  (time independent)  which  forms stationary
states. Therefore, time-dependent perturbation theory can be applied
to the beta decay process, as we can treat decay-causing interation as
weak perturbation.

Lets consider the total Hamiltonian for the system is 
                          
                                         H = HN + HP (t)

where HP (t) is considered to be responsible for beta decay and is smaller
than nuclear potential HN.
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Now, we know in beta decay: 

           | ψi >                                                                  | ψf >                    

Initial state represents                                   Final state represents the 
the state vector/ wave                                    combined state vector/wave
function of parent nucleus                             function of duaghter nucleus  
                                                                       and decay particles (beta  
                                                                       particles and neutrinos)         

Then, from the Fermi Golden rule, the transition rate from initial state to
final state or the decay probability can be given as:

                                   λ=
2π

ℏ
|⟨ψf|Ĥ

p|ψi ⟩|
2

ρ(E f )

                                          λ=
2π

ℏ
|H if

p
|
2
ρ(E f )      --------------- (1)

where the matrix elements H if
p=∫ψf

∗ H pψi d τ with Hp representing the
interaction potential responsible for beta decay.  Also, note that here we
use λ instead of Wif as both are same. 

While ρ (Ef ) is the density of final states, which can also be written as

                                         ρ(E f )=
dn
dE f

                  --------------- (2)   

dn represents the number of final states in the energy interval dEf  .  As
mentioned above, a given transition is more likely to occur if there is a
large number of accessible final states.
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As mentioned above, for beta decay

           ψi      ≡       ψp   (wave function of parent nucleus)

          ψf      ≡       ψd   ψe  ψυ  (combined wave function of duaghter nucleus, 
                                                    beta-particle and anti-neutrino/neutrino)

where ψe  and  ψυ  represent the wave functions of electron and neutrino. ψd

is wave function of duaghter nucleus.  

Therefore, the matrix elements modify as:

                        H if
p=∫ψd

∗ψe
∗ ψν

∗ H p ψi d τ          ------------- (3)

Now, after their production, the beta particle and neutrino move as free
particles. Therefore, the corresponding wave functions have the usual free
particle’s wave function form normalized within the volume V (which is
nuclear volume for beta decay case).  

                               ψe=
1

√V
ei ke⋅r

Since wave vector  ke=
pe

ℏ
 with  pe  being the momentum of electrons

and therefore the electron wave function becomes;

                                   ψe=
1

√V
e

i
pe⋅r

ℏ
                      ----------- (4)

Similarly the wave function for neutrino is given as: 

                                    ψν=
1

√V
e

i
pν⋅r
ℏ                      ----------- (5)



Typically,  the  kinetic  energy  of  beta  particle  is  1  MeV.   Then,  the
momentum is pe = 1.4 MeV/c.

----------------------------------------------------------------------------------------
Passing Remark: Calculation of momentum: 

Relativistic energy E=√ p2 c2+m2 c4  

Also, we know that the relativistic energy is sum of kinetic energy and rest
mass energy i.e.,  E = T + mc2 

As a result,  T+mc2=√ p2 c2+m2 c4

This implies: 
                     (T+mc2

)
2
=p2 c2

+m2c4

                     p2 c2
=(T+mc2

)
2
−m2 c4

                      p=
√(T+mc2)2−m2 c4

c

We are given the kinetic energy T = 1 MeV and we know the rest mass
energy of electron (mc2  ) = 0.511 MeV. Using these number in the above
formula, we can get  p = 1.4 MeV / c .

------------------------------------------------------------------------------------------

With the momentum pe = 1.4 MeV/c, if we calculate 

                     
pe

ℏ
=

1.4 x 1.6 x10−13 J

3 x 108 m /s

1

1.054 x10−34 J−s

                                    
pe

ℏ
=

0.708

10−13 m

                                
pe

ℏ
≈

0.007

10−15 m
=0.007 fm−1



For a typical nuclear radius r = 1 fm,

                                
pe r

ℏ
≈0.007

Therefore,          
 

                                    
pe r

ℏ
≪1                                 ------------ (6)       

                   
Now, from equation (4), the electron wave function can be expanded as:

                               ψe=
1

√V
e

i
pe⋅r

ℏ

                               

                            ψe=
1

√V
(1+i

pe⋅r

ℏ
+ ....)              ------------ (7)

Using the condition  
pe r

ℏ
≪1 , we can keep only first term and all the

higher order terms can be neglected. As a result, 

                                        ψe≈
1

√V
                           ------------ (8)

This approximation is known as the allowed approximation. 
 
Under the allow approximation, we can also neglect the higher order term
in the exponetial of the wave function of neutrino. As a result, the neutrino
wavefunction written in equation (5) modifies as: 

                                       ψν≈
1

√V
                           ------------- (9)



Now, use the modified wavefunction of electron and neutrino written in 
equations (8) and (9) into equation (3) to calculate the matrix element:

                        H if
p
=∫ψd

∗
ψe

∗
ψν

∗ H p
ψi d τ

                       H if
p
=∫ψd

∗ 1

√V
1

√V
H p

ψi d τ

                           H if
p=

1
V
∫ψd

∗ H p ψi d τ

                                  H if
p
=

1
V

M if                              ---------- (10)

where  M if=∫ψd
∗ H p ψi d τ  is  known as  nuclear matrix elements as

only  the waves of parent and daughter nucleus involve in the expression. 

If we put the expression of H if
p

from equation (10) into equation (1), we
get the updated the expression of transition rate 

                                    λ=
2π

ℏ
|H if

p
|
2
ρ(E f )

                                  λ=
2π

ℏ

1

V 2
|M if|

2 dn
dE f

             --------- (11)

Now,  to  obtain  the  transition  probability/rate,  we need to  calculate  the
density of states  ρ(Ef  ) = dn/dEf,  while,  at a time being, nuclear matrix
element Mif  can be treated as constant quantity.  As a result, the transition
probability basically governed by the density of final states.  Hence, the
density of states determines (to lowest order) the shape of the beta
energy spectrum.

Note  that  duaghter  nucleus  can be considered to  have  a  final  quantum
state. In comparison, the decay products (electron and neutrino) being free
particles can have continuum energy states. Therefore, to find the density



of states,  we need to know the number of final states accessible to the
decay products. 
To obtain the number accessible quantum states for electron, let us suppose
in  the  decay  that  we  have  an  electron  (or  positron)  emitted  with
momentum pe. At present, the direction of momentum is not of our interest.
One qualitative way to calculate the states for the momentum range p to
p+dp is as follows:
Since  electron  is  considered  to  be  free  and,  therefore,  its  position  and
momentum can be specified with uncertainities dx, dy, dz, dpx,  dpy, dpz

such that 

                          dx dpx ~ h
                          dy dpy ~ h
                          dz dpz ~ h

Then, we can say the smallest volume in phase which can be measured in
quantum mechanics is:

                              dx dpx  dy dpy dz dpz ~ h3

                          
Or, in other words, we can also say that this volume corresponds the one
quantum  state  of  the  particle  as  we  can’t  determine  the  position  and
momemtum inside the volume. 
Now,  if  we  want  to  calculate  total  number  of  quantum states  inside  a
spatial volume V and momemtum range p to p+dp, we need to calculate to
the corresponding phase space volume by integration. 

                                       V phase=∫ dx dy dz ∫
p

p+dp

dp x dp y dpz



                                     V phase=V 4 π p2 dp

As one qauntum state correponds to h3 phase volume in phase space, then
number of quantum states corresponding to Vphase phase space volume are: 

                                    dne=
4 π p2 dp V

h3

Basically,  dne  represents  the  number  of  quantum  states  available  for
electron confined in a spatial volume V and having momentum p to p+dp.

Similarly,  we can calculate  the number  of  quantum states  available  for
neutrino confined in a spatial volume V and having momentum q to q+dq
and given as: 

                                     dnν=
4 π q2 dq V

h3

Then  the  total  number  of  final  states  which  have  simultaneously  an
electron and a neutrino (confined in spatial volume V) with momenta p to
p+dp and q to q+dp are: 

                                        dn=dne dnν

                               dn=
(4 π)

2 V 2 p2 dpq2 dq

h6          ----------- (12)

If we use this expression of  dn in equation (11), the expression for the
transition probility modifies as: 

                                   λ=
2π

ℏ

1

V 2
|M if|

2 dn
dE f

                        λ=
2π

ℏ
|M if|

2
(4 π)

2 p2 dpq2

h6

dq
dE f
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              Thanks for the attention!




