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Distribution functions and their derivation

Probility Distribution
A Probability distribution is a function that assigns a probability value corresponding to each

value  of  a  random  variable  (i.e.  For  each  possible  outcome  of  an  experiment.)  A  probability
distribution gives the likelihood of each outcome on the basis of probability theory  before the
actual experiment has been done. 

Since probability distribution is a function, it can be represented by a graph with the random
variable (independent variable) shown along the x-axis and the probabilities (dependent variable)
along the y-axis. We can also express this function using suitable analytical expression where such
relation exists. A third way is to depict the function in a table of values.

Example

Suppose that a balanced coin is tossed 4 times. Then there are the following 16 equally likely
outcomes: {HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, THHT, HTTH, THTH, TTHH, HTTT, THTT,
TTHT, TTTH, TTTT}. We can make a table for the probabilities of different number of heads like this:

Number of Heads Frequency of
Occurrence

Probability

0 1 1
16

1 4 4
16

2 6 6
16

3 4 4
16

4 1 1
16

 

This data can also be shown as a histogram:



Discrete Probability Distribution

A  discrete  probability  distribution  is  the  distribution  of  probabilities  of  different  values
assumed by  a discrete random variable.  The example given above is of  a discrete probability
distribution.  

Continuous Probability Distribution

A variable is continuous if the values that it assumes have infinitesimal spacings. This means
that the difference between any two values of the variable is infinitesimal. If a particular value
exists, then we can find another value arbitrarily close to it (as close to it as we choose).

A continuous probability distribution is the distribution of probabilities of different values
assumed by  a  continuous random variable.  In  a  continuous distribution the spacing between
consecutive values is infinitesimally close. So within even a very small range there is a very large
number of values (Theoretically an infinite number of values). 

We use probability density function for expressing the probabilities. 

Some common probability distributions

When we talk about probability distributions in real life, then depending on the nature of
data they can be anything.  But when we talk about theoretical  probabilities,  we make certain
simplifying assumptions and then calculate probability based on these assumptions. Depending on
the assumptions we can have several distributions. Out of these we will study three which are
most useful in our day-to-day situations.

1. Binomial Distribution (Discrete)

2. Gaussian distribution (Continuous)

3. Poisson distribution (Discrete)

Binomial Distribution
There are many situations where a trial is repeated several times (say, n times) and we are

interested in finding out the probability of x successes assuming that the probability of success in
each trial is p.

For example, the probability of a six coming in a die toss is ⅙. If we toss it 5 times what is
the probability of six coming twice?

So, n = 5, x = 2, p = ⅙.

In such cases where the total number of trials is finite and each trial is independent of
others, we use Binomial distribition. 

P (x )= C x
n px

(1− p)
n− x                

Binomial distribution is based on the following assumptions:

1. The number of trials or repetitions of the experiment (n) is fixed.

2. The probability of success is same (p) in each trial.

3. The trials are independent. The outcome of a trial does not affect the probability of success
of any other trial.

The Binomial distribution is valid only where the above assumptions hold.



Consider  an  experiment  that  has  two  outcomes.  Take  one  particular  outcome,  the
probability of whose occurrence is p. Then the probability of its non-occurrence is q = 1 – p. This is
the probability of occurrence of the other outcome. Now suppose that we repeat this experiment
twice. The trials are independent. There are four possibilities when the order is considered.

Case I   : S S P = p x p n = 2 x = 2 P = p2 

Case II  : S F P = p x (1 - p) n = 2 x = 2 P = p(1-p) 

Case III : F S P = (1 - p) x p n = 2 x = 2 P = p(1-p) 

Case IV : F F P = (1 - p) x (1 - p) n = 2 x = 2 P = (1-p)2 

The probabilities of the different possible outcomes when we ignore order of occurrence is
given below:

Occurrences Probability Coefficients

2 times (p/2)*(p/2)=p2/4 1

1 time (p*q + q*p)/4 = 2pq/4 2

None time (q/2)*(q/2) = q2/4 1
 

If the trial is repeated 3 times then the outcomes will be as following:
3 times : p*p*p = p3. Coefficients : 1
2 times : p*p*q + p*q*p + q*p*p = 3 p2q : 3
1 time : p*q*q + q*q*p + q*p* q = 3 pq2 : 3
0 time : q*q*q = q3 : 1

If the trial is repeated 4 times then the outcomes will be as following:

4 times : p*p*p*p = p4 Coefficients : 1

3 times : p*p*p*q + p*p*q*p + p*q*p*p + q*p*p*p = 4 p3q : 4

2 times : p*p*q*q + p*q*p*q + p*q*q*p + q*p*q*p + q*q*p*p + q*p*p*q= 6 p2q2 : 6

1 time : p*q*q*q + q*p*q*q + q*q*p*q + q*q*q*p = 4 pq3 : 4

0 time : q*q*q*q = q4 : 1

We obtain  a  pattern  for  coefficients  as  we  increase  the  number  of  trials  that  we  can
extrapolate. In the triangle given below, each number is the sum of the two numbers immediately
above it. This pattern is called Pascal's triangle. It can be further extended if we want to increase
the number of trials. 

1
            /  \
         1       1
      /    \    /   \
   1 2         1
 /   \    /   \    /    \ 

           1       3       3     1
         /    \    /   \   /  \     /   \
      1     4    6       4       1
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Total Probability = Success probability + Failure probability = 1.

Since the trials are independent, the combined outcome in n trials is the product of the individual
outcomes.

Total Probability = (Success probability + Failure probability)*( Success probability + Failure 
probability )..n times. 

If p is the success probability and q is the fdailure probability then 

1=( p+ q)n= C0
n pnq0

+ C1
n pn−1q1

+ C2
n pn−2q2

+ ...+ C r
n pn−rqr

+ ...+ Cn
n p0qn

The first term consists of the probability for all successes. The second term consists of the
probability  for  one  failure  and  all  rest  successes,  and  so  on.  So  the  rth  term  represents  the
probability for (n-r) successes and r failures.

So we  have 1=( p+ q)n=P (n)+ P(n−1)+ ...+ P (n−r )+ ...+ P (0) .   

On comparison we see that P (n−r )= C r
n pn−r qr

Since C r
n

= C n−r
n we have P (r )= C r

n pr qn−r

Now, q=1− p so that 

P (n , r )= C r
n pr

(1−p)n−r

The above formula defines  the Binomial  distribution.  Binomial  distribution is  a  discrete
distribution. Binomial distribution represents several important processes including distribution of
errors in repeated measurements.

If  p  =  q  =  0.5,  then  the  distribution  is  symmetric  about  n/2.  Some  of  its  important
parameters are following:

Expectation value  =N p

Variance       σ
2
=N pq

Moment of skewness a3=
q− p

√Npq

Moment of Curtosis a4=3+
1−6pq
Npq

Mean and Variance of Binomial Random Variables

The probability function for a binomial random variable is
P (x )= C x

n px
(1− p)

n− x

This  is  the  probability  of  having  x  successes  in  a  series  of  n  independent  trials  when the
probability of success in any one of the trials  is  p .  If  X  is  a random variable with this
probability distribution,



E ( x)=∑
x=0

n

x C x
n px(1−p)n−x

=∑
x=0

n

x
n !

x ! (n−x )!
px

(1−p)n−x

=∑
x=1

n
n !

( x−1)! (n−x )!
px

(1− p)n−x

since the  x=0  term vanishes.  Let y=x −1  and  m=n−1.  Subtituting  x= y+ 1  and
n=m+ 1 into the last sum (and using the fact that the limits x=1 and x=n  correspond to
y=0 and y=n−1=m ,  respectively) we get

E (x)=∑
y=0

m
(m+ 1) !

y ! (m− y )!
py+ 1(1− p)m− y

=(m+ 1) p∑
y=0

m
m!

y !(m− y )!
p y

(1− p)m− y

=np∑
y=0

m
m !

y !(m− y) !
p y

(1−p)m− y

The binomial theorem says that

(a+ b)m=∑
y=0

m
m!

y!(m− y) !
a ybm− y

Setting a= p and b=1− p we get

∑
y=0

m
m!

y !(m− y) !
p y(1−p)m− y=∑

y=0

m
m!

y !(m− y)!
a ybm− y=(a+ b)m=( p+ 1− p)m=1

so that

E (X )=np
Similarly, but this time using y=x −2 and m=n−2

E (X (X −1))=∑
x=0

n

x (x−1) C x
n p x(1−p)n−x

=∑
x=0

n

x (x−1)
n !

x ! (n− x)!
px

(1−p)n−x

=∑
x=2

∞ n !
( x−2)!(n−x) !

px
(1− p)n− x

=n(n−1) p2∑
x=2

∞ n !
(x−2)! (n−x )!

p x−2
(1−p)n−x

=n(n−1) p2∑
y=0

m
m!

( y )! (m− y) !
py (1−p)m− y

=n(n−1) p2
( p+ (1− p))m

=n(n−1) p2

So the variance of X  is

E (X 2
)−E (X )

2
=E (X (X−1))+ E (X )−E (X 2

)=n(n−1) p2
+ np−(np)2

Thus

σ
2
=E (X 2

)−E (X )
2
=np(1− p)



Poisson Distribution
Consider a situation in which the probability of occurrence of an event is very small, but

there is a possibiity of almost infinite trials; where the probability of occurrence of the next event
is independent of earlier occurrences, where the events are so much spaced that the probability of
two events in the same slot is negligible. Then we use the Poisson distribution.

f (x )=
(np)x e−np

x !
 

If we put (np)=λ then we can write f (x )=
(λ )

x e−λ

x !

Note :  λ can be a fractional number but x is an integer. This is why Poisson distribution is a
discrete distribution.

Note : 

Some example applications:

1. A Bank receives an average of λ=6  bad cheques per day. What is the probability that it
will receive x=4  cheques on a given day? 

Solution:  f (4)=
64 . e−6

4 !
=

(1.296)(0.0025)
24

=0.135

2. Suppose that at a road intersection λ=1.6 accidents can be expected on any given day.
What is the probability that x=3 accidents take place on a particular day?

Solution:  f (3)=
1.63. e−1.6

3!
=

(4.096)(0.202)
6

=0.138

3. If  the  prices  of  new  cars  increase  on  average  four  times  every  three  years,  find  the
probability of (i) no price hike in a randomly selected 3 year period, (ii) Two price hikes, (iii)
Four price hikes, (iv) five price hikes.

4. Given  a  binomial  distribution  with  n  =  28  trials  and  p  =  0.025.  Use  the  Poisson
approximation to the binomial to find 

(i) P (r≥3)  (ii) P (r< 5)  (iii) P (r=9).

5. Given λ=6.1 for a Poisson distribution find (i) P (x≤3) (ii) P (x≥2) (iii) P (x=6)

(iv) P (1≤ x≤4)

6. On the  average  five  birds  hit  Patna TV Tower  every  week  and  get  killed.  What  is  the
probability that more than three birds get killed in a week?

Proof of Poisson distribution: Let us suppose that events are occurring at different instances of
time. Let δ t denote a particular small duration of time in which an event can either occur or not
occur. We have assumed that the probability of two events occuring in the same time slot δ t is
negligible (zero).  

Let P1(δ t)=λδ t be the probability of occurrence of one (1) event in the time duration between
t and t+ δ t . 

 P1(δ t)=λδ t (1)

The probability of non-occurrence of an event during δ t is     

P0(δ t)=1−λδ t (2)



If the event has not occurred by the time t , then the probability that it has still not occurred by 
the time t+ δ t is

                                   P0(t+ δ t)=P0( t)(1−λδ t) (3)

Or
P0( t+ δ t )−P0(t )

δ t
=−λ P0(t )

If we make δ t infinitely small, and call it dt then we can write

dP0(t )

dt
=−λ P0(t ) (4)

On integration we get P0(t )=e−λt
+ C

  (5)

If we choose a duration of time zero, then P0(0)=1  so that C=0.

Thus P0(t)=e−λt

  (6)

Now consider the case where n≥1 . 

We will look at the probability of occurrence of n events in time t+ δ t . To calculate this, we
consider the two ways in which this can occur: (1) The event has already occurred by time t , and
then it does not occur in the next δ t . And (2) It has not occurred up to time t , and occurs
during the next  δ t .  The probability of occurrence of  n events in time t+ δ t will be the
sum of these two probabilities. Thus

    Pn(t+ δ t)=Pn(t)(1−λδ t)+ Pn−1(t )λδ t
  (7)

  In the limit that δ t→0 we have

dPn(t)

dt
+ λ Pn(t)=λ Pn−1(t)

  (8)

In order to solve this differential equation we need an integrating factor, i.e. a function which,
when multiplied with LHS makes it a perfect differential. i.e. We want a function μ(t) such that 

μ(t)[ dPn(t)

dt
+ λ Pn(t )]= d

dt
[μ(t)Pn(t)] (9)

One such function that satisfies this criterion is

 μ(t)=eλ t

(10)

This is because 

d
dt

[eλt P n( t)]=λ eλt Pn(t)+ eλt dPn(t )

dt
(11)

Using this in (8) we obtain

d
dt

[eλt P n( t)]=λ eλt Pn−1( t) (12)



When we put n = 1 we get

d
dt

[eλt P1(t )]=λ eλ t P0(t) (13)

Since  by (6) we have P0(t)=e−λt we can write

d
dt

[eλt P1(t )]=λ eλ t e−λ t
=λ (14)

Now we integrate this. 

eλ t P1( t)=∫λ dt=λ t+ C (15)

If  we  choose  t=0, the  probability  to  find  one  event  in  zero  time duration  is  zero.  So  that
P0(0)=0. So C=0. (16)

Thus 

P1(t)=λ t e−λ t (17)

We can also write this as P1(t)=
λ t
1!

e−λ t .

Let us now apply the induction method to generalize this result to arbitrary n . Let us assume
that

Pn(t)=
(λ t )n

n !
e−λ t (18)

is true for a particular n . In particular, we know that (as per 17) it is true for n=1.  Using (12)
we can write 

d
dt

[eλt P n+ 1( t)]=λ eλt Pn( t)=eλ t
λ

(λ t)n

n !
e−λ t

=
λ(λ t)n

n !
(19)

When we integrate this over t we get the following:

eλ t Pn+ 1(t)=∫
λ (λ t )n

n!
dt=

(λ t)n+ 1

(n+ 1)!
+ C (20)

Imposing the boundary condition Pn+ 1(0)=0 gives us C=0. So we finally get it that

  Pn+ 1(t)=
(λ t)n+ 1

n+ 1!
e−λt (21)

We now have two assertions: 

1. From Equation (17) we see that Equation (18) is true for n=1.

2. If Equation (18) is true for n , it is also true for n=1. This is shown by equation (21).

3. Thus Equation (18) is true for n = 1, 2, 3, ... and consequently for all higher values of n.

Equation (18) gives us the expression for Poisson distribution. To recall, Poisson distribution 
is applicable for situations where the following conditions are satisfied:

1. The probability of occurrence of an event is very small 

2. There is a possibiity of almost infinite trials

3. Where  the  probability  of  occurrence  of  the  next  event  is  independent  of  earlier
occurrences



4. Where the events are so much spaced that the probability of two events in the same slot is
negligible. 

Poisson distribution as a special case of Binomial distribution:

The Binomial distribution can be written as following:

P (N ,n)=
N !

(N−n)! n !
pn

(1−p)N−n

We will assume that p→0 and N →∞ .

We will make two approximations:

1. (1− p)N−n
≈e−np

This can be shown in the following way: 

ln [(1− p)N−n ]=(N −n) ln(1− p)

If  p≪1 then using the series expansion

ln(1+ x )=x−
x2

2
+

x3

3
−

x4

4
+ ... for−1< x< 1 we write  ln (1−p)≈−p so that the RHS

becomes (N−n) ln(1− p)≈(N−n)(−p)≈−Np

So

(1− p)N−n
≈e−Np (1)

2. Using Stirling Approximation we write

ln[ N !
(N−n)! ]=N ln N−N−(N−n) ln(N−n)+ (N −n)

For n≪1 ln(N−n)=ln N+ ln(1−
n
N )=ln N −

n
N

or (N−n)(ln N −
n
N )=N ln N −n ln N −n+

n2

N

If n≪N then n2
/N →0 so ln (N ! /(N−n)!)≈n ln N

Thus we have
N !

(N−n)!
≈N n

On putting these together we get

P (N ,n)=
(Np)

n e−Np

n !

If we put Np as λ then we get

P (N ,n)=
λ

n e−λ

n !

This is the expression for Poisson distribution.

Sum of Probabilities:

The sum of probabilities for all n is obtained as:



∑
n=0

∞

Pn(ν)=∑
n=0

∞
ν

n

n !
e−ν

=e−ν∑
n=0

∞
ν

n

n !
=e−νeν

=1

Mean and Standard Deviation:

The mean is given by

〈n〉=∑
n=0

∞

nP (n)=e−μμ∑
n=1

∞ μ
n−1

(n−1) !
=μe−μeμ=μ

The variance is obtained as following:

〈n2
〉=∑

n=0

∞

n2P (n)=μ
2
+ μ

which gives

σ
2
=〈(n−μ)

2
〉=〈n2

〉−μ
2
=μ

Gaussian Distribution
So far we have studied the Binomial distribution and the Poisson distribution. These were

discrete distributions. This means that the probability values are available at discrete intervals of
the corresponding random variable. Thus in the Binomial distribution the different values of the
random variable r for a given value of n  are discretely spaced. In the Poisson distribution the
different  values  of  the  random  variable  x  for  a  given  value  of  λ are  discretely  spaced  (x  =
0,1,2,3,4,...). But in the Gaussian distribution the random variable x is not discrete. It is continuous.
This means that two values of x can be as closely spaced as you desire. Let us see what difference
it makes.

Probabilities of a continuous random variable: If  x is a continuous random variable, then the
probability of having different values for it is distributed continuously over some range of  x ,
then (i) the probability for any particular value will be negligible. (ii) The probability of the value of
x  falling within  a  particular  range will  be  finite  and will  be  in  general  proportional  to  the

interval for small intervals. Thus 

P (x1< x< x2)α ( x2−x1)

Let       P (x1< x< x2)= f (x ).( x2– x1)

Then the function f (x )  is called Probability density function. 

If the interval  (x2 – x1)  is very small then we can call it as dx and P (x1< x< x2)  as
dP . Then

dP= f ( x)dx

P (x1< x< x2)=∫
x1

x2

dP=∫
x1

x2

f ( x)dx

We sometimes call P (x1< x< x2) as Probability mass function. Thus Probability density is 
probability per unit interval of the random variable x over a small interval.

A derivation from basic principles:

Consider throwing a dart at the origin of the Cartesian plane. You are  aiming  at  the origin, but
random errors in your throw will produce varying results. We assume that: 

• the errors do not depend on the orientation of the coordinate system.



• errors in perpendicular directions are independent. This means that being too high doesn't 
alter the probability of being off to the right.

• large errors are less likely than small errors.

In Figure 1, below, we can argue that, according to these assumptions, your throw is more likely to 
land in region A than either B or C, since region A is closer to the origin. Similarly, region B is more 
likely that region C. Further, you are more likely to land in region F than either D or E, since F has 
the larger area and the distances from the origin ;are approximately the same.

Determining the Shape of the Distribution
Consider the probability of the dart falling in the vertical strip from x  to x+ Δ x . Let

this probability be denoted  p (x )Δ x .  Similarly, let the probability of the dart landing in the
horizontal strip from y  to y+ Δ y  be p ( y)Δ y . We are interested in the characteristics
of the function p . From our assumptions, we know that function p  is not constant. In fact,
the function p  is the normal probability density function.

From  the  independence  assumption,  the  probability  of  falling  in  the  shaded  region  is
p (x )Δ x × p ( y)Δ y. Since we assumed that  the orientation  doesn't  matter,  that  any region
r  units from the origin with area Dx ×Dy has the same probability, we can say that

p (x )Δ x × p ( y)Δ y=g (r )Δ x Δ y.
This means that

g (r )=p (x ) p( y ).
Differentiating both sides of this equation with respect to θ , we have

0=p( x)
dp( y )
d θ

+ p ( y)
dp( x)
d θ

as g is independent of orientation, and therefore, θ .

Using x=r cos(θ)  and y=r sin (θ) , we can rewrite the derivatives above as
0=p( x) p ' ( y )(r cos θ)+ p ( y) p ' ( x)(−r sin θ)

Rewriting again, we have
 0=p( x) p ' ( y ) x−p ( y) p ' ( x) y.  

This differential equation can be solved by separating variables,
p ' (x )
x p(x )

=
p ' ( y )
y p ( y)



This differential equation is true for any x  and y , and x  and y  are independent. That
can only happen if the ratio defined by the differential equation is a constant, that is, if

p ' (x )
x p( x)

=
p ' ( y)
y p ( y)

=C

On solving the equation 
p ' (x )

x p( x)
=C we get ln p (x )=

Cx2

2
+ c or p (x )=Ae

Cx2

2

We now use the assumption that the probability of large errors is less than the probability for
small errors. This gives us 

p (x )=Ae
kx2

2

where k  is positive. This argument has given us the basic form of the Gaussian distribution. The

curve is bell-shaped with maximum value at x=0 and points of inflection at x=
±1

√ k
. Now we 

need to find out appropriate values of A and k.
Since p is a probability distribution the total area under the curve must be 1. Thus we need to 
evaluater the following integral equation:

∫
−∞

∞

Ae
−kx2

2 dx=1

The integrand is symmetric about x=0 . so the integrals over positive and negative parts will be
equal. We can consider just the positive part of the integral and write

∫
0

∞

e
−kx2

2 dx=
1

2A
Since x  is a dummy variable, the same will be true with x  replaced by y . Thus,

(∫
0

∞

e
−kx2

2 dx)(∫
0

∞

e
−ky2

2 dy)= 1
4A 2

Since x  and y  are independent, we can rewrite the product as a double integral.

∬
0

∞

e
−k
2

( x2
+ y2

)

dy dx=
1

4A 2

This double integral is now converted into polar co-ordinates. We write 

∬
0

∞

e
−k
2

( x2
+ y2

)

dy dx=∫
0

π
2

∫
0

∞

e
−k
2

r2

r dr d θ

Let us now make the following substitution: Let u=
kr 2

2
Then du=kr dr and we have

∫
0

π
2

∫
0

∞

e
−k
2

r 2

r dr d θ=∫
0

π
2
−1
k [∫0

∞

eu du]d θ=∫
0

π
2
d θ

k
= π

2k

Now, since 
1

4A2
= π

2k so A=√ k
2π

. The probability distribution is

p (x )=√ k
2π

e
−kx2

2

Now we would like to express the value of p (x )  in terms of mean and variance. 

The mean μ is defined as μ=∫
−∞

∞

x p(x )dx. Since the integrand is odd, the mean is zero.

The variance σ
2 is the value of the integral ∫

−∞

∞

( x−μ)
2 p( x)dx . This is an even function. So we

can just integrate from 0 to ∞ and double the value obtained.



σ2=2√ k
2π

∫
0

∞

x2e
−k

2
x2

dx

We can evaluate this integral by parts with u=x  and dv= x e
−k x2

2 to generate the expression

2√ k
2π ([ lim

m→∞

−x
k

e
−k
2

x2

]
0

M

+
1
k ∫0

∞

e
−k

2
x2

dx)
Now, lim

m→∞

−x
k

e
−k

2
x2

=0 and 1
k
∫

0

∞

e
−k

2
x2

dx=
1
k

√2π

2√k

So 2√ k
2π

1
k
∫
0

∞

e
−k
2

x2

dx=2 √k
√2π

.
1
k
. √2π

2√k
=

1
k.

So k=
1

σ
2

The normal probability density function
Now we can obtain the normal probability density function from the three basic assumptions.

p (x )=
1

σ√2π
e

−
1
2
( x
σ )

2

This general expression for the normal distribution with mean μ and standard deviation σ  is
obtained by shifting this distribution horizontally.

p (x )=
1

σ√2π
e

−
1
2
(x−μ

σ )
2
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