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Plasma Stability

To understand  the  issue  of  stability  of  equilibrium of  a  plasma system,  we  first
consider  a  system of  single  particle  which  is  under  the  effect  of  potential  V(x).
Further we consider the potential can have two types of shape as shown in figure
below. 

                                  Figure 1.1                                                                     Figure 1.2 

It is clear from the figure that particle at points A and B is in equilibrium states, as
slope of V(x) at these two points is zero and hence resultant force vanishes. However
both the equilibrium states are different in nature. For the equilibrium state shown in
figure 1.1, if we slightly displace the particle from its equilibrium position x=x0 .
There will be a restoring force which tries to bring the particle to the equilibrium
position. Therefore, once displaced, the particle start oscillating about the equilibrium
position. Such equilibrium is known as stable equilibrium. In contrast, if we consider
the equilibrium shown in figure 1.2, the situation is different. If we slightly displace
the  particle  from  the  equibrium  position,  particle  will  not  return  back  to  this
equilibrium position. Such an equilibrium is known as unstable equilibrium.

In line of the above understanding, to examine the stability of equilibrium state of a
plasma system, we introduce a slight perturbation to the equilibrium state. Now, we
explore whether the perturbation  oscillates with time or monotonically grows with
time. If the perturbation is found to oscillate with time, we can conclude that the
considered  equilibrium  state  is  stable.  And  if  the  perturbation  grows  with  time
unboundly, it means that the assumed equilibrium state is not stable. This is a general
scheme to study the stability of any equilibrium state. 



Normal Mode to Analyze Stability

To determine that a given equilibrium state is stable or not, one needs to carry out the
normal mode analysis. For the purpose, a general strategy is following. First of all,
we consider an equilibrium state. Then, we introduce a slight perturbation to disturb
the  equilibrium.  After  that,  we  need to  linearize  the  equations  which  govern  the
dynamical evolution of the system. For example, if a plasma  can be approximated as
fluid then the governing equations for this system are MHD equations. We will only
consider  plasma  systems  which  can  be  explained  by  MHD  equations.  After
linearization  of  the  governing  MHD  equations,  we  convert  these  equations  in
algebraic  form  by  considering  the  field  variables  in  plane  wave  form  and  then
determine whether the introduced perturbation oscillates or grows with time. 

Now lets consider a MHD equilibrium state characterized by: 

             Magnetic field B = B0(r)
             Velocity field u=u0 =0                                 (static state)
             Mass density ρ = ρ0(r)
             Pressure p = p0(r)

Note  that  the  field  variables  are  time-independent  but  generally  space-dependent.
From the momentum transport equation, a MHD equilibrium state is explained by
following equation: 

                                ∇ p=J×B

The equation for the considered equilibrium state modifies as: 

                           ∇ p0=
(∇×B0)

μ0
×B0                                --------- (1)

Further  lets  consider  that  we introduce  a  small  perturbation  and,  as  a  result,  the
equilibrium state is perturbed as: 

                               B = B0(r) + B1(r, t) 
                               u= 0 + u1(r, t)                               
                               ρ = ρ0(r) + ρ1(r, t) 
                               p = p0(r) + p1(r, t) 

where the change in field variables due to the perturbation is denoted by 1 subscripts.
As the perturabtion is small,  the magnitude of the change is also small. Next, we
would like to linearize the governing MHD equations. 



First,  we  linearize  mass  continuity  equation  by  neglecting  multiplication  of  two
perturbing quantities:

                                          
∂ρ

∂ t
+∇⋅(ρu)=0

                               
∂(ρ0+ρ1)

∂ t
+∇⋅((ρ0+ρ1)u1)=0

                                         
∂ρ1

∂ t
+∇⋅(ρ0 u1)=0                            

                                 
∂ρ1

∂ t
+∇ρ0⋅u1+ρ0 ∇⋅u1=0                     ---------- (2)

This is the linearized mass continuity equation. 

Next, we linearize momentum transport equation: 

                                    ρ
d u
d t

=−∇ p+J×B

              (ρ0+ρ1)(
∂u1

∂ t
+u1⋅∇ u1)=−∇(p0+p1)+

∇×(B0+B1)
μ0

×(B0+B1)

Neglecting the terms which contain two perturbing quantities and using equation (1),
we can obtain: 

                        ρ0

∂u1

∂ t
=−∇ p1+

∇×B0×B1
μ0

+
∇×B1×B0

μ0
    ---------- (3)

This is the linearized momentum transport equation. 

Further, we need to linearize the induction equation which is given as

                                 ∂ B
∂ t

=∇×(u×B)

Note that  we have assumed the plasma to be perfectly  electrical  conducting and,
therefore, neglected the diffusion term in the induction equation. 

                           
∂(B0+B1)

∂ t
=∇×(u1×(B0+B1))



                                
∂ B1

∂ t
=∇×(u1×B0)                            ---------  (4) 

This is the linearized induction equation. 

Finally, we are left with pressure which is specified by the equation of state, 

                                d
d t

(
p
ρ

γ )=0

                        ∂
∂ t

(
p
ρ

γ )+u⋅∇(
p
ρ

γ )=0

Further manipulations and use of the mass continuity equation modifies the above
equation as: 

                         ∂ p
∂ t

+γ p ∇⋅u+u⋅∇ p=0

Now,

              
∂(p0+ p1)

∂ t
+γ(p0+ p1)∇⋅u1+u1⋅∇(p0+ p1)=0

                       
∂ p1

∂ t
+γ p0 ∇⋅u1+u1⋅∇ p0=0                                 ---------- (5)

This is the linearized equation of state. 

Note that the equations (2)-(4) determine the response of the system to the introduced
perturbation. Now, for the normal mode analysis, lets assume that a fluid parcel is
situated at position r when plasma is in equilibrium state, as shown in figure below.
After the perturbation, the parcel is displaced at position  r‘. Then we can define a
displacement vector  ξ  which determines how a fluid parcel gets displaced from its
equilibrium position after the introduction of perturbation.  

Then the velocity vector field u1 can be defined as: 

                                             u1=
∂ξ(r , t)

∂ t
                     -------- (6)

                                       ξ (r , t)=∫
0

t

u1(r , t)dt '



Using equation (6) into equation (2), we get

                             
∂ρ1

∂ t
+

∂ ξ

∂ t
⋅∇ρ0+ρ0∇⋅(

∂ξ

∂ t
)=0

Integrating the equation with time, we get 

                                 ρ1+ξ⋅∇ρ0+ρ0 ∇⋅ξ=0

                                  ρ1=−ξ⋅∇ ρ0−ρ0∇⋅ξ                         --------- (7)

Using equation (6) into equation (4), we obtain
 

                                  
∂ B1

∂ t
=∇×(

∂ ξ

∂ t
×B0)

Integrate the above equation with time, 

                                  B1=∇×(ξ×B0)                                --------- (8)

Now from equation (5), we have 

                        
∂ p1

∂ t
+γ p0∇⋅(

∂ ξ

∂ t
)+

∂ ξ

∂ t
⋅∇ p0=0



and integration with time leads to 

                                p1+γ p0∇⋅ξ+ξ⋅∇ p0=0

                p1=−γ p0 ∇⋅ξ−ξ⋅∇ p0     ----------- (9)

Put  ρ1,  B1, p1 from equations (7), (8) and (9) into equation (3), we can obtain the
following governing equation for ξ,

                                      ρ0

∂2ξ(r ,t)

∂ t 2 =F (ξ)          ----------- (10)

where 

F(ξ)=∇(ξ⋅∇ p0+γ p0 ∇⋅ξ)+
1

4 π
(∇×B0)×[∇×(ξ×B0)]+

1
4π

[∇×∇×(ξ×B0)×B0]

is known as MHD force operator. 

In principle, from equation (10), we can solve for ξ and determine whether ξ . F > 0
or  ξ . F <0. 

The case of ξ . F <0 implies that the displacement and force are in opposite direction.
Hence, due to this restoring nature of the force, the fluid parcel oscillates around the
equilibrium position.  In other words,  the system oscillates around the equilibrium
state and this equilibrium state is stable. In contrast, if   ξ . F > 0, the displacement
and force is in same direction. As a result, the fluid parcel monotonically displaces
from the equilibrium position. In other words, the system doesn’t return back to the
equilibrium state. 

Furthermore, to determine the normal mode, we utilize the following expression of ξ,

                                            ξ (r , t)=ξ0(r)e−i ω t

and if we insert this expression in equation (10), we can obtain ω. Now, if ω is a real
number  then  ξ (r , t)=ξ0(r)e−i ω t will  be  an  oscillatory  function  and  the
corresponding equilibrium will be stable. If  ω is a positive imaginary number then
ξ (r , t)=ξ0(r)e−i ω t will grow with time and the corresponding equilibrium will be

unstable and give rises instability.  
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