

1
Ref: developed with the help of online study material for Python and Matrices

 Jacobi Method: Eigenvalues and Eigenvectors
MPHYCC-05 Unit-IV, Semester-II

Jacobi Method for Eigenvalues and Eigenvectors

Jacobi eigenvalue algorithm is an iterative method for calculating the eigenvalues and

corresponding eigenvectors of a real symmetric matric. This is very important method

in numerical algebra. And adopted the process of matrix diagonalization, where the

eigenvalues are equal to the diagonal element. The method is named after Carl Gustav

Jacob Jacobi, who first proposed the method in 1846.

In this method we will apply some sort of similarity transformations on the given

matrix such that after a sequence of a similarity transformations the matrix convert

into a diagonal matrix and from the diagonal matrix we can see the eigenvalue directly

as the diagonal element. Furthermore the sequence will contain the information about

the eigenvectors of the matrix. So this method is called Jacobi method and this gives a

guarantee for finding the eigenvalues of real symmetric matrices as well as the

eigenvectors for the real symmetric matrix. So, the important points about the

methods are:

 Jacobi method is an iterative method to determine the eigenvalues and

eigenvectors of a symmetric matrix.

 A solution is guaranteed for all real symmetric matrixes.

 It is based on series of rotations called Jacobi or given rotations.

 The rotations that are similarity transformations are chosen to discard the off-

diagonal elements in such a way that eigenvalues are preserved. As the similarities

matrixes are having same eigenvalues.

We should have the idea of a rotation matrix; a 2 by 2 rotation matrix with angle θ in a

plane is given by:

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

2
Ref: developed with the help of online study material for Python and Matrices

So it is an orthogonal matrix as the inverse this matrix is equal to its transpose.

Similarly the three dimensional rotations matrix with angle θ in space about x, y, and z

axes can be written as:

Similarly a n by n rotation matrix is defined as J(p,q,θ) and having form:

So here we want to put the cos and sin terms in p th row and qth column and pth column

and qth row.

The matrix J(p,q,θ) is known as Jacobi’s rotation. The matrix J(p,q,θ) is applied to

symmetric matric A as a similarity transformation which rotates row and column p

and q of A through an angle θ so that (p, q) and (q, p) entries become zero. So let us

denote this similarity transformation as:

Let off(A) and off(A’) be the square root of sum of squares of all off-diagonal elements

of A and A’ respectively. Then the square of off diagonal elements of A:

3
Ref: developed with the help of online study material for Python and Matrices

 ∑

Where F denotes the Frobenius norm of a matrix and it is defined as the square root

of the sum of the squares of the elements of the matrix. Since the Frobenius norm is

invariant under orthogonal transformations and only p and q columns and rows are

reformed in matrix A’. Thus

 ∑

 ∑

 ∑

 ∑

Finally it comes out that the square sum of the squares of off diagonal elements of A’

is less than the square sum of the squares of off diagonal elements of A. It means that

the elements from off diagonal are eliminating going towards zero on application of

Jacobi transformation and this is the basic motivation for the Jacobi method.

The relation between the elements of matrix A and A’ are given by the formulas:

4
Ref: developed with the help of online study material for Python and Matrices

As we want to make the off element of the new matrix A’ is zero. Thus we can write

that condition:

As c = cosθ and s = sinθ, thus if apq≠0 then the above condition give us

The above equation can be used to calculate the rotation for the similarity

transformation. Using tanθ will generate less round off error in computation. As we

know

 then the above equation becomes

Which is a quadratic equation in t; and solution of this equation

gives the value of t that is tanθ as:

 √

and hence the angle for the similarity transformation can be derived. The value of c

and s will be given with formula as

√

Following steps are adopted in the Jacobi method:

 Find the pth and qth row and column which correspond to the off diagonal element

having highest value.

 Compute the Jacobi matrix after calculating the angle of similarity rotation

 Apply the Jacobi matrix to the matrix as the way mentioned as mentioned above.

And do the same till when the matrix converted completely into a diagonal matrix.

The diagonal element will be the eigenvalues.

 The eigenvectors will be the columns of the Jacobi matrix.

5
Ref: developed with the help of online study material for Python and Matrices

Example

The following example demonstrates this method in details.

6
Ref: developed with the help of online study material for Python and Matrices

The columns of the Jacobi matrix are the eigenvectors of the matrix A. This is the fact

which can be understood as follows. Since the application of Jacobi matrix to a given

matrix, A result into a diagonalzed matrix A’ as:

Multiplying with J on both sides gives:

7
Ref: developed with the help of online study material for Python and Matrices

Because J is a orthogonal matrix. J can be written in terms of columns and:

Thus the columns of the Jacobi matrix are the required eigenvectors of the matrix. It

should be noted that the eigenvectors are orthogonal to each-other as expected

because matrix is real symmetric.

Physically, the process of diagonalization can be understood in terms of Gershgorin

circle. The circles (disc) is centered at diagonal elements with radius is the sum of row

(except diagonal) of that diagonal. Below are the Gershgorin circles for the matrixes

A, A1, and A2 which are discussed in example 1 where the Jacobi matrix J1 transform

A into A1 and the Jacobi matrix converted A1 into A2.

8
Ref: developed with the help of online study material for Python and Matrices

We can see that the Gershgorin circles become disjoint and shrink to points when the

matrix completely transformed into a diagonal matrix. Thus job of the Jacobi matrix

in the process of similarity transformation is to change the matrix into a matrix which

has Gershgorin circles in the form of disjoint points.

We can write a python code to diagonalzed the given matrix and calculated the

eigenvalues and corresponding eigenvectors. Below is the python code developed by

Abraham Toriz Cruz on GitHub.

9
Ref: developed with the help of online study material for Python and Matrices

Python scripts and outputs

Script:

……………………………………………………………………...
from numpy import array,identity,diagonal

from math import sqrt
def Jacobi(A,tol = 1.0e-9): # Jacobi method
Find largest off-diagonal element a[k,l]
 def maxElem(A):

 n = len(A)
 Amax = 0.0
 for i in range(n-1):
 for j in range(i+1,n):

 if abs(A[i,j]) >= Amax:
 Amax = abs(A[i,j])
 k = i; l = j
 return Amax,k,l

Rotate to make A[k,l] = 0 and define the rotation matrix
 def rotate(A,p,k,l):
 n = len(A)

 Adiff = A[l,l] - A[k,k]
 if abs(A[k,l]) < abs(Adiff)*1.0e-36: t = A[k,l]/Adiff
 else:
 phi = Adiff/(2.0*A[k,l])

 t = 1.0/(abs(phi) + sqrt(phi**2 + 1.0))
 if phi < 0.0: t = -t
 c = 1.0/sqrt(t**2 + 1.0); s = t*c
 tau = s/(1.0 + c)

 temp = A[k,l]
 A[k,l] = 0.0
 A[k,k] = A[k,k] - t*temp
 A[l,l] = A[l,l] + t*temp

 for i in range(k): # Case of i < k
 temp = A[i,k]
 A[i,k] = temp - s*(A[i,l] + tau*temp)
 A[i,l] = A[i,l] + s*(temp - tau*A[i,l])

 for i in range(k+1,l): # Case of k < i < l
 temp = A[k,i]
 A[k,i] = temp - s*(A[i,l] + tau*A[k,i])
 A[i,l] = A[i,l] + s*(temp - tau*A[i,l])

 for i in range(l+1,n): # Case of i > l

10
Ref: developed with the help of online study material for Python and Matrices

 temp = A[k,i]
 A[k,i] = temp - s*(A[l,i] + tau*temp)

 A[l,i] = A[l,i] + s*(temp - tau*A[l,i])
 for i in range(n): # Update transformation matrix
 temp = p[i,k]
 p[i,k] = temp - s*(p[i,l] + tau*p[i,k])

 p[i,l] = p[i,l] + s*(temp - tau*p[i,l])

 n = len(A)
 maxRot = 5*(n**2) # Set limit on number of rotations

 p = identity(n)*1.0 # Initialize transformation matrix
 for i in range(maxRot): # Jacobi rotation loop
 Amax,k,l = maxElem(A)
 if Amax < tol: return diagonal(A),p

 rotate(A,p,k,l)
 print('Jacobi method did not converge')
import numpy as np
A = eval(input('Enter the matrix A:'))

as np.array([[a11,a12],[a21,a22]])
print('Eigenvalues and Eigenvectors of matrix:\n', A)
print('is\n', Jacobi(A,tol = 1.0e-9)) # set the tolerance as your wish
……………………………………………………………………...

Outputs:

After compiling the above python script and for different real symmetric matrices we
have following outputs:

…………………………………………………………………………………….
Enter the matrix A:np.array([[1,2],[2,4]])
Eigenvalues and Eigenvectors of matrix:
 [[1 2]

 [2 4]]
is
 (array([0, 5]), array([[0.89442719, 0.4472136],
 [-0.4472136 , 0.89442719]]))

Thus the eigenvalues are: 0 & 5. And corresponding eigenvectors are: [0.89442719, -
0.4472136], that is [2, -1] and [0.4472136, 0.89442719] that is [1, 2]. Therefore
eigenvectors are: [2, -1] & [1, 2] and they are orthogonal to each-other as expected.
…………………………………………………………………….................................

…………………………………………………………………….................................

11
Ref: developed with the help of online study material for Python and Matrices

For the real symmetric matrix:

The above python code gives the following output which is same as described in the

example.

Enter the matrix A:np.array([[1,sqrt(2),2],[sqrt(2),3,sqrt(2)],[2,sqrt(2),1]])

Eigenvalues and Eigenvectors of matrix:
 [[1. 1.41421356 2.]
 [1.41421356 3. 1.41421356]
 [2. 1.41421356 1.]]

is
 (array([-1., 1., 5.]), array([[0.70710678, -0.5 , 0.5],
 [0. , 0.70710678, 0.70710678],
 [-0.70710678, -0.5 , 0.5]]))

Thus the eigenvalues are: -1, 1 & 5. And corresponding eigenvectors are: [0.70710678,
0, -0.70710678], [-0.5, 0.70710678, -0.5] and [0.5, 0.70710678, 0.5].
…………………………………………………………………….................................

