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 Jacobi Method: Eigenvalues and Eigenvectors                                                                 
MPHYCC-05 Unit-IV, Semester-II              

Jacobi Method for Eigenvalues and Eigenvectors 

Jacobi eigenvalue algorithm is an iterative method for calculating the eigenvalues and 

corresponding eigenvectors of a real symmetric matric. This is very important method 

in numerical algebra. And adopted the process of matrix diagonalization, where the 

eigenvalues are equal to the diagonal element. The method is named after Carl Gustav 

Jacob Jacobi, who first proposed the method in 1846.   

In this method we will apply some sort of similarity transformations on the given 

matrix such that after a sequence of a similarity transformations the matrix convert 

into a diagonal matrix and from the diagonal matrix we can see the eigenvalue directly 

as the diagonal element. Furthermore the sequence will contain the information about 

the eigenvectors of the matrix. So this method is called Jacobi method and this gives a 

guarantee for finding the eigenvalues of real symmetric matrices as well as the 

eigenvectors for the real symmetric matrix. So, the important points about the 

methods are: 

 Jacobi method is an iterative method to determine the eigenvalues and 

eigenvectors of a symmetric matrix. 

 A solution is guaranteed for all real symmetric matrixes. 

 It is based on series of rotations called Jacobi or given rotations. 

 The rotations that are similarity transformations are chosen to discard the off-

diagonal elements in such a way that eigenvalues are preserved. As the similarities 

matrixes are having same eigenvalues.  

We should have the idea of a rotation matrix; a 2 by 2 rotation matrix with angle θ in a 

plane is given by: 

 

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
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So it is an orthogonal matrix as the inverse this matrix is equal to its transpose. 

Similarly the three dimensional rotations matrix with angle θ in space about x, y, and z 

axes can be written as: 

 

Similarly a n by n rotation matrix is defined as J(p,q,θ) and having form: 

 

So here we want to put the cos and sin terms in p th row and qth column and pth column 

and qth row.  

The matrix J(p,q,θ) is known as Jacobi’s rotation. The matrix J(p,q,θ) is applied to 

symmetric matric A as a similarity transformation which rotates row and column p 

and q of A through an angle θ so that (p, q) and (q, p) entries become zero.  So let us 

denote this similarity transformation as: 

                            

Let off(A) and off(A’) be the square root of sum of squares of all off-diagonal elements 

of A and A’ respectively. Then the square of off diagonal elements of A:  
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Where F denotes the Frobenius norm of a matrix and it is defined as the square root 

of the sum of the squares of the elements of the matrix. Since the Frobenius norm is 

invariant under orthogonal transformations and only p and q columns and rows are 

reformed in matrix A’. Thus   
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Finally it comes out that the square sum of the squares of off diagonal elements of A’ 

is less than the square sum of the squares of off diagonal elements of A. It means that 

the elements from off diagonal are eliminating going towards zero on application of 

Jacobi transformation and this is the basic motivation for the Jacobi method.   

The relation between the elements of matrix A and A’ are given by the formulas:  
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As we want to make the off element of the new matrix A’ is zero. Thus we can write 

that condition: 

                            

As c = cosθ and s = sinθ, thus if apq≠0 then the above condition give us 

                 
        

     
 

         

     
 

The above equation can be used to calculate the rotation for the similarity 

transformation. Using tanθ will generate less round off error in computation. As we 

know      
  

 
        then the above equation becomes 

  
     

   
 

Which is              a quadratic equation in t; and solution of this equation 

gives the value of t that is tanθ as: 

         √     

and hence the angle for the similarity transformation can be derived. The value of c 

and s will be given with formula as 

  
  

√    
          

Following steps are adopted in the Jacobi method: 

 Find the pth and qth row and column which correspond to the off diagonal element 

having highest value. 

 Compute the Jacobi matrix after calculating the angle of similarity rotation 

 Apply the Jacobi matrix to the matrix as the way mentioned as mentioned above. 

And do the same till when the matrix converted completely into a diagonal matrix. 

The diagonal element will be the eigenvalues. 

 The eigenvectors will be the columns of the Jacobi matrix.  
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Example 

The following example demonstrates this method in details.  
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The columns of the Jacobi matrix are the eigenvectors of the matrix A. This is the fact 

which can be understood as follows. Since the application of Jacobi matrix to a given 

matrix, A result into a diagonalzed matrix A’ as: 

          

Multiplying with J on both sides gives: 
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Because J is a orthogonal matrix. J can be written in terms of columns and: 

 

 

Thus the columns of the Jacobi matrix are the required eigenvectors of the matrix. It 

should be noted that the eigenvectors are orthogonal to each-other as expected 

because matrix is real symmetric.  

Physically, the process of diagonalization can be understood in terms of Gershgorin 

circle. The circles (disc) is centered at diagonal elements with radius is the sum of row 

(except diagonal) of that diagonal. Below are the Gershgorin circles for the matrixes 

A, A1, and A2 which are discussed in example 1 where the Jacobi matrix J1 transform 

A into A1 and the Jacobi matrix converted A1 into A2. 
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We can see that the Gershgorin circles become disjoint and shrink to points when the 

matrix completely transformed into a diagonal matrix. Thus job of the Jacobi matrix 

in the process of similarity transformation is to change the matrix into a matrix which  

has Gershgorin circles in the form of disjoint points.  

We can write a python code to diagonalzed the given matrix and calculated the 

eigenvalues and corresponding eigenvectors. Below is the python code developed by  

Abraham Toriz Cruz on GitHub.  



 

9 
Ref: developed with the help of online study material for Python and Matrices 

Python scripts and outputs 

Script: 

……………………………………………………………………... 
from numpy import array,identity,diagonal 

from math import sqrt 
def Jacobi(A,tol = 1.0e-9): # Jacobi method   
# Find largest off-diagonal element a[k,l] 
    def maxElem(A):  

        n = len(A) 
        Amax = 0.0 
        for i in range(n-1): 
            for j in range(i+1,n): 

                if abs(A[i,j]) >= Amax: 
                    Amax = abs(A[i,j]) 
                    k = i; l = j 
        return Amax,k,l 

      
# Rotate to make A[k,l] = 0 and define the rotation matrix 
    def rotate(A,p,k,l):  
        n = len(A) 

        Adiff = A[l,l] - A[k,k] 
        if abs(A[k,l]) < abs(Adiff)*1.0e-36: t = A[k,l]/Adiff 
        else: 
            phi = Adiff/(2.0*A[k,l]) 

            t = 1.0/(abs(phi) + sqrt(phi**2 + 1.0)) 
            if phi < 0.0: t = -t 
        c = 1.0/sqrt(t**2 + 1.0); s = t*c 
        tau = s/(1.0 + c) 

        temp = A[k,l] 
        A[k,l] = 0.0 
        A[k,k] = A[k,k] - t*temp 
        A[l,l] = A[l,l] + t*temp 

        for i in range(k):      # Case of i < k 
            temp = A[i,k] 
            A[i,k] = temp - s*(A[i,l] + tau*temp) 
            A[i,l] = A[i,l] + s*(temp - tau*A[i,l]) 

        for i in range(k+1,l):  # Case of k < i < l 
            temp = A[k,i] 
            A[k,i] = temp - s*(A[i,l] + tau*A[k,i]) 
            A[i,l] = A[i,l] + s*(temp - tau*A[i,l]) 

        for i in range(l+1,n):  # Case of i > l 
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            temp = A[k,i] 
            A[k,i] = temp - s*(A[l,i] + tau*temp) 

            A[l,i] = A[l,i] + s*(temp - tau*A[l,i]) 
        for i in range(n):      # Update transformation matrix 
            temp = p[i,k] 
            p[i,k] = temp - s*(p[i,l] + tau*p[i,k]) 

            p[i,l] = p[i,l] + s*(temp - tau*p[i,l]) 
         
    n = len(A) 
    maxRot = 5*(n**2)       # Set limit on number of rotations 

    p = identity(n)*1.0     # Initialize transformation matrix 
    for i in range(maxRot): # Jacobi rotation loop  
        Amax,k,l = maxElem(A) 
        if Amax < tol: return diagonal(A),p 

        rotate(A,p,k,l) 
    print('Jacobi method did not converge') 
import numpy as np     
A = eval(input('Enter the matrix A:')) 

# as np.array([[a11,a12],[a21,a22]]) 
print('Eigenvalues and Eigenvectors of matrix:\n', A) 
print('is\n', Jacobi(A,tol = 1.0e-9)) # set the tolerance as your wish 
……………………………………………………………………... 
 

Outputs: 

After compiling the above python script and for different real symmetric matrices we 
have following outputs: 

……………………………………………………………………………………. 
Enter the matrix A:np.array([[1,2],[2,4]]) 
Eigenvalues and Eigenvectors of matrix: 
 [[1 2] 

 [2 4]] 
is 
 (array([0, 5]), array([[ 0.89442719,  0.4472136 ], 
       [-0.4472136 ,  0.89442719]])) 

Thus the eigenvalues are: 0 & 5. And corresponding eigenvectors are: [0.89442719, -
0.4472136], that is [2, -1] and [0.4472136, 0.89442719] that is [1, 2]. Therefore 
eigenvectors are: [2, -1] & [1, 2] and they are orthogonal to each-other as expected. 
……………………………………………………………………................................. 

 
……………………………………………………………………................................. 
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For the real symmetric matrix: 

 

The above python code gives the following output which is same as described in the 

example. 

Enter the matrix A:np.array([[1,sqrt(2),2],[sqrt(2),3,sqrt(2)],[2,sqrt(2),1]])  

Eigenvalues and Eigenvectors of matrix: 
 [[1.         1.41421356     2.   ] 
 [1.41421356       3.         1.41421356] 
 [2.         1.41421356        1.   ]] 

is 
 (array([-1.,  1.,  5.]), array([[ 0.70710678, -0.5       ,  0.5       ], 
       [ 0.        ,  0.70710678,  0.70710678], 
       [-0.70710678, -0.5       ,  0.5       ]])) 

Thus the eigenvalues are: -1, 1 & 5. And corresponding eigenvectors are: [0.70710678,  
0, -0.70710678], [-0.5, 0.70710678, -0.5] and [0.5, 0.70710678, 0.5].  
……………………………………………………………………................................. 
 


