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 Power Method: Eigenvalue & Eigenvector                                                                 
MPHYCC-05 Unit-IV Semester-II 

          

Power Method for Approximating Eigenvalue & vector:  

In the previous section we saw that the eigenvalues of n by n matrix are computed by 

solving the characteristic equation |    |   . The equation is a polynomial in λ of 

degree n. For large value of n, it is difficult and time consuming to solve the 

polynomial equation. Moreover, numerical techniques for approximating roots of 

polynomial equations of high degree are sensitive to rounding errors. The method 

presented here can be used only to find the eigenvalue of matrix A which is largest in 

absolute value. And the eigenvalue is known as the dominant eigenvalue of A. 

Although this restriction may seem severe, dominant eigenvalues are of primary 

interest in many physical applications. For instance, Google uses it to calculate  the 

PageRank of documents in their search engine The power iteration method is 

especially suitable for sparse matrices, such as the web matrix, or as the matrix-free 

method that does not require storing the coefficient matrix explicitly, but can instead 

access a function evaluating matrix-vector products.   

The power method can be used when: 

 The matrix A is n by n matrix and having n linearly independent eigenvectors,  v1, 

v2, v3, …, vn 

 The eigenvalues can be ordered in magnitude as  

|  |  |  |  |  |    |  | 

And in this case λ1 is called as dominant eigenvalues of A. 

Now if A satisfies these conditions, then any vector, xo can be written as a linear 

combination of v1, v2, v3, …, vn as: 

                         

Where c’s are the coefficients. Operating A on the above equation gives: 

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Matrix-free_methods
https://en.wikipedia.org/wiki/Matrix-free_methods
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If k is very large then the first term on the right hand side is dominating over other 

terms as λ1 is greater than the other eigenvalues.  

For large powers of k, and by properly scaling this sequence, we will be able to find 

the good approximation of the dominant eigenvector of A say x. Once we have x, 

then using Rayleigh quotient which states: “If x is an eigenvector of a matrix A, 

then its corresponding eigenvalue is given by 

    

   
   

Thus we could able to calculate the eigenvalue.  We can also use the alternative way to 

calculate the eigenvalues which is as follows.  

The last equation as:  

       
         

         
           

       

 

As k tends to infinity the first term is also tending infinity. Thus to make it finite, we 

divide the last equation with   
  which transform the last equation as: 

    

  
       

  
 

  
       

  
 

  
         

  
 

  
       

Because λ1 is greater than the other eigenvalues thus as k goes to infinity, the above 

equation becomes 
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As long as c1≠0, this equation can give us an approximation to λ1. And c1≠0 

guaranteed when xo is not orthogonal to v1. Operating the above equation with A one 

more time lead to:  

      

  
         

Now λ1 is computed from these two equations; by multiplying these equations with a 

vector y which is not orthogonal to v1 and dividing them lead us to: 

        

      
    

 The powers of A give the name as power method. And  

    

|     |
 converges to the (a multiple of) corresponding eigenvalue. The convergence is 

slowly if the second largest eigenvalue is close in magnitude to the dominant 

eigenvalue.  Following steps are adopted in the power method: 

 Assume a simple possible dominating eigenvector with norm equal to 1 

 Apply the matrix A on the vector till it converges 

 Find the approximated dominating eigenvector 

 Calculate the dominating eigenvalues using Rayleigh quotient method or other as 

mention in this document 

 

When to stop in the power method: In principle we would like to stop when the 

calculated value of dominating eigenvalue,    
    match with the actual 

eigenvalue  
    . However, in the most realistic problem we do not know the  

    . 

Thus we estimate |   
      

    |  and stop when this value is quite small. The  

|   
      

    | can be calculated by using the relation: 
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Example:  

The following example demonstrates this method very well.  
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Python scripts and outputs:  

Python script is given below to find the dominating eigenvalue and corresponding 

eigenvector of a given matrix.  

Script: 
………………………………………………………………………………………

# importing the numerical libraries of python 
import numpy as np 
 
# Entering the matrix, initial guess, number of iteration  

A = eval(input('Enter the matrix A:'))# as np.array([[a11,a12],[a21,a22]])  
x1 = eval(input('Enter initial guess of x:'))  # as [x01,x02] 
x2 = eval(input('Enter initial guess of x:'))  # as [x01,x02] exactly same as x1 
n = eval(input('Enter the number of Iterations:')) 

 
# using the for loop and calculating the multiplication 
#of power matrix and initial guess and looking for convergence  
for i in range (n): 

    x1=np.dot(A, x1) 
    norm=np.linalg.norm(x1) 
    #normalized form 
    B=x1/norm 

    print(B) 
# using the for loop and calculating the multiplication of 
#power matrix and initial guess just one power less than the previous one    
for i in range (n-1): 

    x2=np.dot(A, x2) 
 
#calculation of approximate dominating eigenvector 
C=np.min(abs(B)) 

eigvect=B/C 
 
#calculating the approximate dominating corresponding eigenvalue 
y = eval(input('Enter a non-orthogonal matrix:'))# as [y01,y02] 

eigvalue=np.dot(x1,y)/np.dot(x2,y) 
 
# printing dominating eigenvalue and corresponding eigenvalue  
print('Dominating eigenvalue is', eigvalue) 

print('and corresponding eigenvector is', eigvect) 
……………………………………………………………………………………… 
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Outputs: 

After compiling the above python script and using the same matrix as described in the 

example with different initial guesses; we have following outputs: 

…………………………………………………………………… 
With initial guess [1, 0] and for iteration 10 
 

Enter the matrix A:np.array([[1,3],[2,2]]) 
Enter initial guess of x:[1,0] 
Enter initial guess of x:[1,0] 
Enter the number of Iterations:10 

[0.4472136  0.89442719] 
[0.7592566  0.65079137] 
[0.69310872 0.72083306] 
[0.71054763 0.70364911] 

[0.70624288 0.70796963] 
[0.70732253 0.70689097] 
[0.70705283 0.70716073] 
[0.70712027 0.70709329] 

[0.70710341 0.70711015] 
[0.70710762 0.70710594] 
Enter a non-orthogonal matrix:[1,0] 
Dominating eigenvalue is 4.000028610393202 

and corresponding eigenvalue is [1.00000238 1.        ] 
……………………………………………………………………... 
 
 

Thus eigenvalue and eigenvector is close to expected value that is 4 & [1, 1]. However, 
for the initial guess [1, 1] and iteration 10; we have the exact required result as shown 
below. 
 

……………………………………………………………………... 
Enter the matrix A:np.array([[1,3],[2,2]]) 
Enter initial guess of x:[1,1] 
Enter initial guess of x:[1,1] 

Enter the number of Iterations:10 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
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[0.70710678 0.70710678] 
[0.70710678 0.70710678] 

[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 

[0.70710678 0.70710678] 
Enter a non orthogonal matrix:[1,0] 
Dominating eigenvalue is 4.0 
and corresponding eigenvalue is [1. 1.]  

……………………………………………………………………... 
 
 
For a different matrix with initial guess [1,1] and iteration 10, we have:   

 
Enter the matrix A:np.array([[0.5,0.5],[0.2,0.8]]) 
Enter initial guess of x:[1,1] 
Enter initial guess of x:[1,1] 

Enter the number of Iterations:10 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 

[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 

[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
[0.70710678 0.70710678] 
Enter a non-orthogonal matrix:[1,0] 

Dominating eigenvalue is 1.0 
and corresponding eigenvector is [1. 1.] 
……………………………………………………………………... 
 

For a 3 by 3 matrix with initial guess [1,1,1] and iteration 10 we have: 

Enter the matrix A:np.array([[1,2,0],[-2,1,2],[1,3,1]]) 

Enter initial guess of x:[1,1,1] 
Enter initial guess of x:[1,1,1] 
Enter the number of Iterations:10 
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[0.50709255 0.16903085 0.84515425] 
[0.38235956 0.38235956 0.84119102] 

[0.39056673 0.4426423  0.80717125] 
[0.41103969 0.41103969 0.81369082] 
[0.41010447 0.40452482 0.81741911] 
[0.40793707 0.40793707 0.81680763] 

[0.40804075 0.40866324 0.81639274] 
[0.40828286 0.40828286 0.81646201] 
[0.40827133 0.4082022  0.8165081 ] 
[0.40824445 0.40824445 0.81650042] 

Enter a non-orthogonal matrix:[1,0,0] 
Dominating eigenvalue is 2.9996613326559984 
and corresponding eigenvector is [1.         1.         2.00002823] 
 
Therefore, the exact dominating eigenvector and eigenvector is 3 & [1, 1, 2] which is 

very close to the approximated value resulting from this iterative method. However, 

we can have the exact value if we take the initial guess as [1, 1, 2] as we can see below. 

Enter the matrix A:np.array([[1,2,0],[-2,1,2],[1,3,1]]) 
Enter initial guess of x:[1,1,2] 
Enter initial guess of x:[1,1,2] 

Enter the number of Iterations:10 
[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 

[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 

[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 
[0.40824829 0.40824829 0.81649658] 
Enter a non-orthogonal matrix:[1,0,0] 

Dominating eigenvalue is 3.0 
and corresponding eigenvector is [1. 1. 2.] 
 ………………………………………………………………….. 
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Inverse Power Method: 

 It is method to find the smallest eigenvalue and corresponding eigenvector of a real 

non-singular matrix A if method is convergent.  

Let A be an  n by n matrix with eigenvalues λ1, λ2, λ3,...λn and associated eigenvectors 

v1, v2, v3,...vn. Let q be a number for which det(A−qI) ≠0 so q is not an eigenvalue of 

A. 

 Let B = (A−qI)−1 so the eigenvalues of B are given by      
 

    
 ,      

 

    
, 

     
 

    
, …,      

 

    
 . And corresponding eigenvectors are same as A that is 

v1, v2, v3,...vn. If λk is the eigenvalue that is closest to the number q, then µ k is the 

dominant eigenvalue for B and so it can be determined using the power method. 

Moreover, to find the eigenvalue of A that is smallest in magnitude is equivalent to 

find the dominant eigenvalue of the matrix B = A−1.  And this is the inverse power 

method with q = 0. The steps adopted in the inverse power method are follows. 

 First compute the matrix (A-qI) 

 Then calculate its inverse that is B = (A−qI)−1 

 Apply power method and compute the dominating eigenvalue and corresponding 

eigenvector for matrix B 

 

.……………………………………………………………………………………… 


