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Maxwell’s equations in Four-tensor notation 

 

In four dimensional a two-index antisymmetric tensor has (4 × 3)/2 = 6 independent 

components. Since this is equal to 3 + 3, it suggests that perhaps we should be grouping the 

electric and magnetic fields together into a single 2-index antisymmetric tensor. Thus we 

introduce a tensor Fµν, satisfying  

Fµν = −Fνµ                                              (1) 

It turns out that we should define its components in terms of �⃗�  and �⃗�  as follows:  

 
Here ɛijk is the usual totally-antisymmetric tensor of 3-dimensional vector calculus. 

It is equal to +1 if (ijk) is an even permutation of (123), to = −1 if it is an odd permutation, and 

to zero if it is no permutation (i.e. if two or more of the indices (ijk) are equal). In other words, 

we have 

 

 
Viewing Fµν as a matrix with rows labelled by µ and columns labelled by ν, we shall have 

 

We also need to combine the charge density ρ and the 3-vector current density 𝐽  into a four-

dimensional quantity. We define a four-vector Jµ, whose spatial components Ji are just the usual 

3-vector current components, and whose time component J0 is equal to the charge density ρ: 

 
Maxwell equations expressed in terms of Fµν and Jµ 

 

 
The equations are manifestly Lorentz covariant, i.e. they transform like tensor under Lorentz 

transformations. This means that they keep the same form in all Lorentz frames. This equation 

is vector-valued, since it has the free index ν. Therefore, to reduce it down to three-dimensional 

equations, we have two cases to consider, namely ν = 0 or ν = j. For ν = 0 we have 

 
which therefore corresponds to 

 
For ν = j, we shall have 

 
 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 



which gives 

 
This is just 

 
Turning now to Eqn. (6), it follows from the antisymmetric Eqn. (1) of Fµν that the left-hand 

side is totally antisymmetric in (µνρ) (i.e. it changes sign under any exchange of a pair of 

indices). Therefore, there are two distinct assignments of indices, after we make the 1 + 3 

decomposition µ = (0, i) etc. Either one of the indices is a 0 with the other two Latin, or 

else all three are Latin. Consider first (µ, ν, ρ) = (0, i, j): 

 
which, from Eqn. (2), means 

 
Since this is antisymmetric in ij there is no loss of generality involved in contracting with 

ɛijℓ, which gives 

 
This is just the statement that 

 
Which is one of the Maxwell’s equation. The other distinct possibility for assigning 

decomposed indices in Eqn. (6) is to take (µ, ν, ρ) = (i, j, k), giving 

 
Since this is totally antisymmetric in (i, j, k), no generality is lost by contracting it 

with ɛijk, giving 

 
Which implies 

 

This has just reproduced the Maxwell equation in �⃗�  ·  �⃗�  = 0. 

We may begin by considering the quantities Jµ = (ρ, Ji ). Note first that by applying ∂ν to the 

Maxwell field equation (3), we get identically zero on the left-hand side, since partial 

derivatives commute and Fµν is antisymmetric. Thus, from the left-hand side we get 

 
This is the equation of charge conservation. Decomposed into the 3 + 1 language, 

it takes the familiar form 

 
By integrating over a closed 3-volume V and using the divergence theorem on the second 

term, we learn that the rate of change of charge inside V is balanced by the flow of charge 

through its boundary S: 
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Now we are in a position to show that Jµ = (ρ, 𝐽 ) is indeed a four vector. Considering 

J0 = ρ first, we may note that 

 
is clearly Lorentz invariant, since it is an electric charge. Clearly, for example, all 

Lorentz observers will agree on the number of electrons in a given closed spatial region, and 

so they will agree on the amount of charge. Another quantity that is Lorentz invariant is  

dv = dtdxdydz, the volume of an infinitesimal region in spacetime. This can be seen from the 

fact that the Jacobian J of the transformation from dv to dv′ = dt′dx′dy′dz′ is given by 

 
the Lorentz transformation can be written in a matrix notation as ΛTη Λ = η and 

hence taking the determinant, we get (det Λ)2 = 1 and hence det Λ = ±1. If we restrict attention 

to Lorentz transformations without reflections, then they will be connected to the identity, and 

so det Λ = 1. Thus, it follows from Eqn. (23) that for Lorentz transformations without 

reflections, the four-volume element dtdxdydz is Lorentz invariant. Comparing dQ = ρdxdydz 

and dv = dtdxdydz, both of which we have argued are Lorentz invariant, we can conclude that 

ρ must transform in the same way as dt under Lorentz transformations. In other words, ρ must 

transform like the 0 component of a four-vector. Thus writing, as we did, that J0 = ρ, is justified. 

In the same way, we may consider the spatial components Ji of the putative four-vector Jµ. 

Considering J1, for example, we know that J1dydz is the current flowing through the area 

element dydz. Therefore, in time dt, there will have been a flow of charge J1dtdydz. Being a 

charge, this must be Lorentz invariant, and so it follows from the known Lorentz invariance of 

dv = dtdxdydz that J1 must transform the same way as dx under Lorentz transformations. Thus, 

J1 does indeed transform like the 1 component of a four-vector. Similar arguments apply to J2 

and J3.  We have now established that Jµ = (ρ, Ji) is indeed a Lorentz four-vector, where ρ is 

the charge density and Ji the 3-vector current density. 

Using Lorenz gauge 

  

 
We can write Maxwell’s field equation as: 

 
We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction 

of indices on the two Lorentz-vector gradient operators. Since we have already established 

that Jµ is a four-vector, it therefore follows that Aµ is a four-vector. The Lorenz gauge condition 

translates, in the four-dimensional, into 

 
 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 



If we write 

 
The η00 = −1 when lowering the 0 index, shall give 

 
Therefore, we find 

 

 
we have shown that Jµ is a four-vector, and hence, Aµ is a 4-vector. Then, it is that Fµν is a four-

tensor. Hence, we have established that the Maxwell equations, are indeed expressed in terms 

of four-tensors and four-vectors, and so the manifest Lorentz covariance of the Maxwell 

equations is established. 
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