

Relativistic Electrodynamics M.Sc. 2nd Semester MPHYCC-6: Electrodynamics and Plasma Physics Unit IV

Topic: Maxwell's equations in Four-Tensor notation

Compiled by

Dr. Ashok Kumar Jha Assistant Professor Department of Physics, Patna University Mob:7903067108, Email: <u>ashok.jha1984@gmail.com</u>

Source: http://people.physics.tamu.edu/pope/EM611/em611-2010.pdf

Maxwell's equations in Four-tensor notation

In four dimensional a two-index antisymmetric tensor has $(4 \times 3)/2 = 6$ independent components. Since this is equal to 3 + 3, it suggests that perhaps we should be grouping the electric and magnetic fields together into a single 2-index antisymmetric tensor. Thus we introduce a tensor $F_{\mu\nu}$, satisfying

$$F\mu\nu = -F\nu\mu \tag{1}$$

It turns out that we should define its components in terms of \vec{E} and \vec{B} as follows:

$$F_{0i} = -E_i, \qquad F_{i0} = E_i, \qquad F_{ij} = \epsilon_{ijk} B_k \tag{2}$$

Here ε_{ijk} is the usual totally-antisymmetric tensor of 3-dimensional vector calculus. It is equal to +1 if (ijk) is an even permutation of (123), to = -1 if it is an odd permutation, and to zero if it is no permutation (i.e. if two or more of the indices (ijk) are equal). In other words, we have

$$F_{23} = B_1, \qquad F_{31} = B_2, \qquad F_{12} = B_3,$$

$$F_{32} = -B_1, \qquad F_{13} = -B_2, \qquad F_{21} = -B_3$$
(3)

Viewing $F_{\mu\nu}$ as a matrix with rows labelled by μ and columns labelled by ν , we shall have

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$
(4)

We also need to combine the charge density ρ and the 3-vector current density \vec{J} into a fourdimensional quantity. We define a four-vector J_{μ} , whose spatial components J_i are just the usual 3-vector current components, and whose time component J_0 is equal to the charge density ρ :

$$J^0 = \rho, \qquad J^i = J^i. \tag{5}$$

Maxwell equations expressed in terms of $F_{\mu\nu}$ and J_{μ}

$$\partial_{\mu}F^{\mu\nu} = -4\pi J^{\nu},$$

$$\partial_{\mu}F_{\nu\rho} + \partial_{\nu}F_{\rho\mu} + \partial_{\rho}F_{\mu\nu} = 0.$$
(6)

The equations are manifestly Lorentz covariant, i.e. they transform like tensor under Lorentz transformations. This means that they keep the same form in all Lorentz frames. This equation is vector-valued, since it has the free index v. Therefore, to reduce it down to three-dimensional equations, we have two cases to consider, namely v = 0 or v = j. For v = 0 we have

$$\partial_i F^{i0} = -4\pi J^0 \tag{7}$$

which therefore corresponds to

$$-\partial_i E_i = -4\pi\rho$$
, i.e. $\vec{\nabla} \cdot \vec{E} = 4\pi\rho$. (8)

For v = j, we shall have

$$\partial_0 F^{0j} + \partial_i F^{ij} = -4\pi J^j \tag{6}$$

(9)

which gives

$$\partial_0 E_j + \epsilon_{ijk} \partial_i B_k = -4\pi J^j \tag{10}$$

This is just

$$-\frac{\partial \vec{E}}{\partial t} + \vec{\nabla} \times \vec{B} = 4\pi \vec{J}.$$
(11)

Turning now to Eqn. (6), it follows from the antisymmetric Eqn. (1) of $F_{\mu\nu}$ that the left-hand side is totally antisymmetric in $(\mu\nu\rho)$ (i.e. it changes sign under any exchange of a pair of indices). Therefore, there are two distinct assignments of indices, after we make the 1 + 3 decomposition $\mu = (0, i)$ etc. Either one of the indices is a 0 with the other two Latin, or else all three are Latin. Consider first $(\mu, \nu, \rho) = (0, i, j)$:

$$\partial_0 F_{ij} + \partial_i F_{j0} + \partial_j F_{0i} = 0 \tag{12}$$

which, from Eqn. (2), means

$$\epsilon_{ijk} \frac{\partial B_k}{\partial t} + \partial_i E_j - \partial_j E_i = 0 \tag{13}$$

Since this is antisymmetric in ij there is no loss of generality involved in contracting with $\epsilon_{ij\ell}$, which gives

$$2\frac{\partial B_{\ell}}{\partial t} + 2\epsilon_{ij\ell}\,\partial_i E_j = 0 \tag{14}$$

This is just the statement that

$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \tag{15}$$

Which is one of the Maxwell's equation. The other distinct possibility for assigning decomposed indices in Eqn. (6) is to take $(\mu, \nu, \rho) = (i, j, k)$, giving

$$\partial_i F_{jk} + \partial_j F_{ki} + \partial_k F_{ij} = 0 \tag{16}$$

Since this is totally antisymmetric in (i, j, k), no generality is lost by contracting it with ε_{ijk} , giving

$$3\epsilon_{ijk}\,\partial_i F_{jk} = 0\tag{17}$$

(10)

Which implies

$$3\epsilon_{ijk}\epsilon_{jk\ell}\partial_i B_\ell = 0$$
, and hence $6\partial_i B_i = 0$ (18)

This has just reproduced the Maxwell equation in $\vec{\nabla} \cdot \vec{B} = 0$.

We may begin by considering the quantities $J^{\mu} = (\rho, J^{i})$. Note first that by applying ∂_{ν} to the Maxwell field equation (3), we get identically zero on the left-hand side, since partial derivatives commute and $F^{\mu\nu}$ is antisymmetric. Thus, from the left-hand side we get

$$\partial_{\mu}J^{\mu} = 0 \tag{19}$$

This is the equation of charge conservation. Decomposed into the 3 + 1 language, it takes the familiar form

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0 \tag{20}$$

By integrating over a closed 3-volume V and using the divergence theorem on the second term, we learn that the rate of change of charge inside V is balanced by the flow of charge through its boundary S:

$$\frac{\partial}{\partial t} \int_{V} \rho dV = -\int_{S} \vec{J} \cdot d\vec{S}$$
⁽²¹⁾

Now we are in a position to show that $J^{\mu} = (\rho, \vec{J})$ is indeed a four vector. Considering $J^0 = \rho$ first, we may note that

ć

$$dQ \equiv \rho dx dy dz \tag{22}$$

is clearly Lorentz invariant, since it is an electric charge. Clearly, for example, all Lorentz observers will agree on the number of electrons in a given closed spatial region, and so they will agree on the amount of charge. Another quantity that is Lorentz invariant is dv = dtdxdydz, the volume of an infinitesimal region in spacetime. This can be seen from the fact that the Jacobian J of the transformation from dv to dv' = dt'dx'dy'dz' is given by

$$\mathcal{I} = \det\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right) = \det(\Lambda^{\mu}{}_{\nu}) \tag{23}$$

the Lorentz transformation can be written in a matrix notation as $\Lambda^T \eta \Lambda = \eta$ and hence taking the determinant, we get $(\det \Lambda)^2 = 1$ and hence det $\Lambda = \pm 1$. If we restrict attention to Lorentz transformations without reflections, then they will be connected to the identity, and so det $\Lambda = 1$. Thus, it follows from Eqn. (23) that for Lorentz transformations without reflections, the four-volume element dtdxdydz is Lorentz invariant. Comparing $dQ = \rho dxdydz$ and dv = dtdxdydz, both of which we have argued are Lorentz invariant, we can conclude that ρ must transform in the same way as dt under Lorentz transformations. In other words, ρ must transform like the 0 component of a four-vector. Thus writing, as we did, that $J^0 = \rho$, is justified. In the same way, we may consider the spatial components J^i of the putative four-vector J^{μ} . Considering J^1 , for example, we know that J^1 dydz is the current flowing through the area element dydz. Therefore, in time dt, there will have been a flow of charge J¹dtdydz. Being a charge, this must be Lorentz invariant, and so it follows from the known Lorentz invariance of dv = dtdxdydz that J¹ must transform the same way as dx under Lorentz transformations. Thus, J^1 does indeed transform like the 1 component of a four-vector. Similar arguments apply to J^2 and J³. We have now established that $J^{\mu} = (\rho, J^{i})$ is indeed a Lorentz four-vector, where ρ is the charge density and Jⁱ the 3-vector current density. Using Lorenz gauge

$$\vec{\nabla} \cdot \vec{A} + \frac{\partial \phi}{\partial t} = 0 \tag{24}$$

We can write Maxwell's field equation as:

 $\Box A^{\mu} = -4\pi J^{\mu} \,,$

where

$$A^{\mu} = (\phi, \vec{A}), \qquad (25)$$

We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction of indices on the two Lorentz-vector gradient operators. Since we have already established that J^{μ} is a four-vector, it therefore follows that A^{μ} is a four-vector. The Lorenz gauge condition translates, in the four-dimensional, into

$$\partial_{\mu}A^{\mu} = 0 \tag{26}$$

If we write

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

The $\eta_{00} = -1$ when lowering the 0 index, shall give

$$A_{\mu} = (-\phi, \vec{A}) \tag{28}$$

(27)

Therefore, we find

$$F_{0i} = \partial_0 A_i - \partial_i A_0 = \frac{\partial A_i}{\partial t} + \partial_i \phi = -E_i,$$

$$F_{ij} = \partial_i A_j - \partial_j A_i = \epsilon_{ijk} (\vec{\nabla} \times \vec{A})_k = \epsilon_{ijk} B_k$$
(29)

we have shown that J^{μ} is a four-vector, and hence, A^{μ} is a 4-vector. Then, it is that $F_{\mu\nu}$ is a fourtensor. Hence, we have established that the Maxwell equations, are indeed expressed in terms of four-tensors and four-vectors, and so the manifest Lorentz covariance of the Maxwell equations is established.

Reference:

1. <u>http://people.physics.tamu.edu/pope/EM611/em611-2010.pdf</u>