Relativistic Electrodynamics
 M.Sc. 2nd Semester
 MPHYCC-6: Electrodynamics and Plasma Physics

 Unit IV

 Unit IV

 Topic: Maxwell's equations in Four-Tensor notation

 Topic: Maxwell's equations in Four-Tensor notation}

Compiled by
Dr. Ashok Kumar Jha
Assistant Professor
Department of Physics, Patna University
Mob:7903067108, Email: ashok.jha1984@gmail.com

Maxwell's equations in Four-tensor notation

In four dimensional a two-index antisymmetric tensor has $(4 \times 3) / 2=6$ independent components. Since this is equal to $3+3$, it suggests that perhaps we should be grouping the electric and magnetic fields together into a single 2-index antisymmetric tensor. Thus we introduce a tensor $\mathrm{F}_{\mu v}$, satisfying

$$
\begin{equation*}
F \mu \nu=-F v \mu \tag{1}
\end{equation*}
$$

It turns out that we should define its components in terms of \vec{E} and \vec{B} as follows:

$$
\begin{equation*}
F_{0 i}=-E_{i}, \quad F_{i 0}=E_{i}, \quad F_{i j}=\epsilon_{i j k} B_{k} \tag{2}
\end{equation*}
$$

Here $\varepsilon_{i \mathrm{ijk}}$ is the usual totally-antisymmetric tensor of 3-dimensional vector calculus.
It is equal to +1 if (ijk) is an even permutation of (123), to $=-1$ if it is an odd permutation, and to zero if it is no permutation (i.e. if two or more of the indices (ijk) are equal). In other words, we have

$$
\begin{align*}
& F_{23}=B_{1}, \quad F_{31}=B_{2}, \quad F_{12}=B_{3}, \\
& F_{32}=-B_{1}, \quad F_{13}=-B_{2}, \quad F_{21}=-B_{3} \tag{3}
\end{align*}
$$

Viewing $\mathrm{F}_{\mu \nu}$ as a matrix with rows labelled by μ and columns labelled by v, we shall have

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{1} & -E_{2} & -E_{3} \tag{4}\\
E_{1} & 0 & B_{3} & -B_{2} \\
E_{2} & -B_{3} & 0 & B_{1} \\
E_{3} & B_{2} & -B_{1} & 0
\end{array}\right)
$$

We also need to combine the charge density ρ and the 3 -vector current density \vec{J} into a fourdimensional quantity. We define a four-vector J_{μ}, whose spatial components J_{i} are just the usual 3 -vector current components, and whose time component J_{0} is equal to the charge density ρ :

$$
\begin{equation*}
J^{0}=\rho, \quad J^{i}=J^{i} . \tag{5}
\end{equation*}
$$

Maxwell equations expressed in terms of $\mathrm{F}_{\mu \nu}$ and J_{μ}

$$
\begin{align*}
\partial_{\mu} F^{\mu \nu} & =-4 \pi J^{\nu}, \tag{6}\\
\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}+\partial_{\rho} F_{\mu \nu} & =0 .
\end{align*}
$$

The equations are manifestly Lorentz covariant, i.e. they transform like tensor under Lorentz transformations. This means that they keep the same form in all Lorentz frames. This equation is vector-valued, since it has the free index v. Therefore, to reduce it down to three-dimensional equations, we have two cases to consider, namely $v=0$ or $v=j$. For $v=0$ we have

$$
\begin{equation*}
\partial_{i} F^{i 0}=-4 \pi J^{0} \tag{7}
\end{equation*}
$$

which therefore corresponds to

$$
\begin{equation*}
-\partial_{i} E_{i}=-4 \pi \rho, \quad \text { i.e. } \quad \vec{\nabla} \cdot \vec{E}=4 \pi \rho . \tag{8}
\end{equation*}
$$

For $v=\mathrm{j}$, we shall have

$$
\begin{equation*}
\partial_{0} F^{0 j}+\partial_{i} F^{i j}=-4 \pi J^{j} \tag{9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\partial_{0} E_{j}+\epsilon_{i j k} \partial_{i} B_{k}=-4 \pi J^{j} \tag{10}
\end{equation*}
$$

This is just

$$
\begin{equation*}
-\frac{\partial \vec{E}}{\partial t}+\vec{\nabla} \times \vec{B}=4 \pi \vec{J} . \tag{11}
\end{equation*}
$$

Turning now to Eqn. (6), it follows from the antisymmetric Eqn. (1) of $\mathrm{F}_{\mu \nu}$ that the left-hand side is totally antisymmetric in ($\mu \nu \rho$) (i.e. it changes sign under any exchange of a pair of indices). Therefore, there are two distinct assignments of indices, after we make the $1+3$ decomposition $\mu=(0, \mathrm{i})$ etc. Either one of the indices is a 0 with the other two Latin, or else all three are Latin. Consider first $(\mu, \nu, \rho)=(0, i, j)$:

$$
\begin{equation*}
\partial_{0} F_{i j}+\partial_{i} F_{j 0}+\partial_{j} F_{0 i}=0 \tag{12}
\end{equation*}
$$

which, from Eqn. (2), means

$$
\begin{equation*}
\epsilon_{i j k} \frac{\partial B_{k}}{\partial t}+\partial_{i} E_{j}-\partial_{j} E_{i}=0 \tag{13}
\end{equation*}
$$

Since this is antisymmetric in ij there is no loss of generality involved in contracting with $\varepsilon_{\mathrm{ij} \ell}$, which gives

$$
\begin{equation*}
2 \frac{\partial B_{\ell}}{\partial t}+2 \epsilon_{i j \ell} \partial_{i} E_{j}=0 \tag{14}
\end{equation*}
$$

This is just the statement that

$$
\begin{equation*}
\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \tag{15}
\end{equation*}
$$

Which is one of the Maxwell's equation. The other distinct possibility for assigning decomposed indices in Eqn. (6) is to take $(\mu, \nu, \rho)=(i, j, k)$, giving

$$
\begin{equation*}
\partial_{i} F_{j k}+\partial_{j} F_{k i}+\partial_{k} F_{i j}=0 \tag{16}
\end{equation*}
$$

Since this is totally antisymmetric in ($\mathrm{i}, \mathrm{j}, \mathrm{k}$), no generality is lost by contracting it with $\varepsilon_{i \mathrm{ijk}}$, giving

$$
\begin{equation*}
3 \epsilon_{i j k} \partial_{i} F_{j k}=0 \tag{17}
\end{equation*}
$$

Which implies

$$
\begin{equation*}
3 \epsilon_{i j k} \epsilon_{j k \ell} \partial_{i} B_{\ell}=0, \quad \text { and hence } \quad 6 \partial_{i} B_{i}=0 \tag{18}
\end{equation*}
$$

This has just reproduced the Maxwell equation in $\vec{\nabla} \cdot \vec{B}=0$.
We may begin by considering the quantities $J^{\mu}=\left(\rho, J^{i}\right)$. Note first that by applying ∂_{v} to the Maxwell field equation (3), we get identically zero on the left-hand side, since partial derivatives commute and $\mathrm{F}^{\mu v}$ is antisymmetric. Thus, from the left-hand side we get

$$
\begin{equation*}
\partial_{\mu} J^{\mu}=0 \tag{19}
\end{equation*}
$$

This is the equation of charge conservation. Decomposed into the $3+1$ language, it takes the familiar form

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{J}=0 \tag{20}
\end{equation*}
$$

By integrating over a closed 3 -volume V and using the divergence theorem on the second term, we learn that the rate of change of charge inside V is balanced by the flow of charge through its boundary S :

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{V} \rho d V=-\int_{S} \vec{J} \cdot d \vec{S} \tag{21}
\end{equation*}
$$

Now we are in a position to show that $\mathrm{J}^{\mu}=(\rho, \vec{J})$ is indeed a four vector. Considering $\mathrm{J}^{0}=\rho$ first, we may note that

$$
\begin{equation*}
d Q \equiv \rho d x d y d z \tag{22}
\end{equation*}
$$

is clearly Lorentz invariant, since it is an electric charge. Clearly, for example, all Lorentz observers will agree on the number of electrons in a given closed spatial region, and so they will agree on the amount of charge. Another quantity that is Lorentz invariant is $\mathrm{dv}=\mathrm{dtdxdydz}$, the volume of an infinitesimal region in spacetime. This can be seen from the fact that the Jacobian J of the transformation from $d v$ to $d v^{\prime}=d t^{\prime} d x^{\prime} d y^{\prime} d z^{\prime}$ is given by

$$
\begin{equation*}
\mathcal{J}=\operatorname{det}\left(\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}\right)=\operatorname{det}\left(\Lambda^{\mu}{ }_{\nu}\right) \tag{23}
\end{equation*}
$$

the Lorentz transformation can be written in a matrix notation as $\Lambda^{T} \eta \Lambda=\eta$ and hence taking the determinant, we get $(\operatorname{det} \Lambda)^{2}=1$ and hence $\operatorname{det} \Lambda= \pm 1$. If we restrict attention to Lorentz transformations without reflections, then they will be connected to the identity, and so $\operatorname{det} \Lambda=1$. Thus, it follows from Eqn. (23) that for Lorentz transformations without reflections, the four-volume element dtdxdydz is Lorentz invariant. Comparing dQ $=\rho d x d y d z$ and dv = dtdxdydz, both of which we have argued are Lorentz invariant, we can conclude that ρ must transform in the same way as dt under Lorentz transformations. In other words, ρ must transform like the 0 component of a four-vector. Thus writing, as we did, that $J^{0}=\rho$, is justified. In the same way, we may consider the spatial components J^{i} of the putative four-vector J^{μ}. Considering \mathbf{J}^{1}, for example, we know that \mathbf{J}^{1} dydz is the current flowing through the area element dydz. Therefore, in time dt, there will have been a flow of charge \mathbf{J}^{1} dtdydz. Being a charge, this must be Lorentz invariant, and so it follows from the known Lorentz invariance of $\mathrm{dv}=\mathrm{dtdxdydz}$ that J^{1} must transform the same way as dx under Lorentz transformations. Thus, J^{1} does indeed transform like the 1 component of a four-vector. Similar arguments apply to J^{2} and J^{3}. We have now established that $J^{\mu}=\left(\rho, J^{i}\right)$ is indeed a Lorentz four-vector, where ρ is the charge density and J^{i} the 3 -vector current density.
Using Lorenz gauge

$$
\begin{equation*}
\vec{\nabla} \cdot \vec{A}+\frac{\partial \phi}{\partial t}=0 \tag{24}
\end{equation*}
$$

We can write Maxwell's field equation as:

$$
\square A^{\mu}=-4 \pi J^{\mu},
$$

where

$$
\begin{equation*}
A^{\mu}=(\phi, \vec{A}), \tag{25}
\end{equation*}
$$

We saw that it is manifestly a Lorentz scalar operator, since it is built from the contraction of indices on the two Lorentz-vector gradient operators. Since we have already established that J^{μ} is a four-vector, it therefore follows that A^{μ} is a four-vector. The Lorenz gauge condition translates, in the four-dimensional, into

$$
\begin{equation*}
\partial_{\mu} A^{\mu}=0 \tag{26}
\end{equation*}
$$

If we write

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{27}
\end{equation*}
$$

The $\eta_{00}=-1$ when lowering the 0 index, shall give

$$
\begin{equation*}
A_{\mu}=(-\phi, \vec{A}) \tag{28}
\end{equation*}
$$

Therefore, we find

$$
\begin{align*}
F_{0 i} & =\partial_{0} A_{i}-\partial_{i} A_{0}=\frac{\partial A_{i}}{\partial t}+\partial_{i} \phi=-E_{i}, \tag{29}\\
F_{i j} & =\partial_{i} A_{j}-\partial_{j} A_{i}=\epsilon_{i j k}(\vec{\nabla} \times \vec{A})_{k}=\epsilon_{i j k} B_{k}
\end{align*}
$$

we have shown that J^{μ} is a four-vector, and hence, A^{μ} is a 4-vector. Then, it is that $\mathrm{F}_{\mu \nu}$ is a fourtensor. Hence, we have established that the Maxwell equations, are indeed expressed in terms of four-tensors and four-vectors, and so the manifest Lorentz covariance of the Maxwell equations is established.

Reference:

1. http://people.physics.tamu.edu/pope/EM611/em611-2010.pdf
