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Gauss-Seidel Iteration Method 
 MPHYCC-05 unit IV (Sem.-II)                

Gauss-Seidel Iteration Method 

Gauss–Seidel method is an iterative method to solve a set of linear equations and very 

much similar to Jacobi’s method. This method is also known as Liebmann method or 

the method of successive displacement. The name successive displacement is because 

the second unknown is determined from the first unknown in the current iteration, 

the third unknown is determined from the first and second unknowns. This method 

was developed by German mathematicians Carl Friedrich Gauss and Philipp Ludwig 

von Seidel. The method can be applied to any matrix with non-zero diagonal 

elements. However, the convergence is only possible if the matrix is either diagonally 

dominant, or symmetric & positive definite. The process adopted by this method for 

solving a set of linear equations is as follows.  

Let us assume a set of linear equations in the matrix form is as follows: 

AX = B 

Where 

 

Further, the matrix A can be decomposed into a lower triangular part (L*) and an 

strict upper triangular component (U) as: 

A= L* + U 

Where  
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And equation AX=B can be written as 

(      )    

Therefore, the solution can be obtained iteratively via using the following relation: 

 (   )     
  (     ( )) 

Where   ( ) and   (   ) are the kth and (k+1)th iteration of X.  

The elements of   (   ) can be computed sequentially using the element-based 

forward substitution formula: 
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Thus the calculation of   (   ) is using the value of   (   ) that have already 

computed and only those value of   ( ) that have not been calculated in the (k+1) 

iteration. Hence, only one storage vector is required because the elements can be 

overwritten as they computed which is opposite to Jacobi method. We know that in 

Jacobi method the computations for each element can be done in parallel but the 

parallel computation is not possible in the Gauss-Seidel method. 

The process adopted by this method can be understood completely by starting with 

the following motivational example.  

 



 

3 
Ref: developed with the help of online study material for Methods of Matrix Inversion 

 



 

4 
Ref: developed with the help of online study material for Methods of Matrix Inversion 

 

Python script is given below to solve the set of linear equations using Gauss Seidel 

iteration method.  

……………………………………………………………………................................. 
import numpy as np 
from scipy.linalg import solve 

def GaussSeidel(A, B, x, n): 
    L=np.tril(A) 
    U=A-L 



 

5 
Ref: developed with the help of online study material for Methods of Matrix Inversion 

    
      

    for i in range(n): 
        x = np.dot(np.linalg.inv(L), B - np.dot(U, x)) 
        print(x) 
    return x 

 
'''___Main___''' 
 
A = eval(input('Enter the matrix A:')) 

# as np.array([[a11,a12],[a21,a22]]) 
B = eval(input('Enter the matrix B:'))# as [b1,b2] 
x = eval(input('Enter guess of x:'))  # as [x1,x2] 
n = eval(input('Enter the number of Iterations:')) 

x = GaussSeidel(A, B, x, n) 
print ('Solution using the solve syntax:\n', solve(A, B)) 
……………………………………………………………………................................. 
 

After compiling the above python script and for the different matrices we have the 

following out puts: 

…………………………………………………………………………………….. 

Enter the matrix A:np.array([[2,1],[3,7]]) 
Enter the matrix B:[4,3] 
Enter guess of x:[0,0] 
Enter the number of Iterations:25 

[ 2.         -0.42857143] 
[ 2.21428571 -0.52040816] 
[ 2.26020408 -0.54008746] 
[ 2.27004373 -0.54430446] 

[ 2.27215223 -0.5452081 ] 
[ 2.27260405 -0.54540174] 
[ 2.27270087 -0.54544323] 
[ 2.27272161 -0.54545212] 

[ 2.27272606 -0.54545403] 
[ 2.27272701 -0.54545443] 
[ 2.27272722 -0.54545452] 
[ 2.27272726 -0.54545454] 

[ 2.27272727 -0.54545454] 
[ 2.27272727 -0.54545455] 
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[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 

[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 

[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 
[ 2.27272727 -0.54545455] 

[ 2.27272727 -0.54545455] 
Solution using the solve syntax: 
 [ 2.27272727 -0.54545455] 
Hence solution is [ 2.27272727 -0.54545455] 

……………………………………………………………………................................. 
 
Enter the matrix A:np.array([[2,1],[5,7]]) 
Enter the matrix B:[11,15] 

Enter guess of x:[0,0] 
Enter the number of Iterations:25 
[ 5.5        -1.78571429] 
[ 6.39285714 -2.42346939] 

[ 6.71173469 -2.65123907] 
[ 6.82561953 -2.73258538] 
[ 6.86629269 -2.76163764] 
[ 6.88081882 -2.77201344] 

[ 6.88600672 -2.77571909] 
[ 6.88785954 -2.77704253] 
[ 6.88852127 -2.77751519] 
[ 6.88875759 -2.777684  ] 

[ 6.888842   -2.77774428] 
[ 6.88887214 -2.77776582] 
[ 6.88888291 -2.77777351] 
[ 6.88888675 -2.77777625] 

[ 6.88888813 -2.77777723] 
[ 6.88888862 -2.77777758] 
[ 6.88888879 -2.77777771] 
[ 6.88888885 -2.77777775] 

[ 6.88888888 -2.77777777] 
[ 6.88888888 -2.77777777] 
[ 6.88888889 -2.77777778] 
[ 6.88888889 -2.77777778] 
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[ 6.88888889 -2.77777778] 
[ 6.88888889 -2.77777778] 

[ 6.88888889 -2.77777778] 
Solution using the solve syntax: 
 [ 6.88888889 -2.77777778] 
Hence solution is [ 6.88888889 -2.77777778] 

………………………………………………………………………………………. 
 
 
Enter the matrix A:np.array([[5,-1,3],[-3,9,1],[2,-1,-7]]) 

Enter the matrix B:[-3,5,7] 
Enter guess of x:[1,1,1] 
Enter the number of Iterations:25 
[-1.          0.11111111 -1.3015873 ] 

[ 0.2031746   0.76790123 -1.05165029] 
[ 0.18457042  0.73392906 -1.0521126 ] 
[ 0.17805337  0.73180808 -1.05367162] 
[ 0.17856459  0.73215171 -1.05357465] 

[ 0.17857513  0.73214445 -1.0535706 ] 
[ 0.17857125  0.7321427  -1.05357146] 
[ 0.17857142  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 

[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 

[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 

[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 

[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 
[ 0.17857143  0.73214286 -1.05357143] 

Solution using the solve syntax: 
 [ 0.17857143  0.73214286 -1.05357143] 
Hence solution is [ 0.17857143  0.73214286 -1.05357143] 
…………………………………………………………………… 


