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Jacobi’s Iteration Method 
 MPHYCC-05 unit IV (Sem.-II)                

Jacobi’s Iteration method 

Jacobi’s method in numerical linear algebra is an iterative method to compute the 

solution of a strictly diagonally dominant system of linear equations. The method 

is named after Carl Gustav Jacob Jacobi. The method is a shorter version of 

the Jacobi transformation method of matrix diagonalization. The process adopted 

by this method for solving a set of linear equations is as follows.  

Let us assume a set of linear equations in the matrix form is as follows: 

AX = B 

Where 

 

Further, the matrix A can be decomposed into a diagonal component (D), a strictly 

lower triangular part (L) and a strictly upper triangular component (U) as: 

A=D + L + U 

Where  

 

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
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Moreover, the solution can be obtained iteratively via using the following relation: 

           (            ) 

Where       and         are the k
th
 and (k+1)

th 
iteration of X. The elements 

of         can be computed using the element-based formula: 
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Thus new value of X is calculated after putting the previous iterative value of X in 

the above equation till the required accuracy is achieved. However, we overwrite, 

  
   

 with    
     

. The important thing is that the method should be converging for 

having a solution. And the sufficient but not necessary condition for the method to 

converge is that the matrix is strictly diagonally dominant. That means for each 

row the absolute value of diagonal term is greater than the sum of the absolute 

values of the other terms: 

|   |   ∑ |   |

   

 

However, the method sometimes converges even if these conditions are not 

satisfied. Moreover, the standard convergence condition for any iterative method is 

defined in terms of the spectral radius, ρ() of the iteration matrix. And the spectral 

radius of the matrix is equal to the largest absolute value of its eigenvalues. The 

convergence condition for the method is when the spectral radius, ρ() of the 

iteration matrix          is less than 1; thus 
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 (        )    

The method is simple and numerically robust and each iterations quite fast. 

However, the method is computing the independent variables of the linear 

equations in parallel and independent way. Therefore the method might require 

much iteration as well as good memory power of computational system. In-order to 

understand the process completely, we start with a motivational example as given 

below.  
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Python script is given below to solve the set of linear equations using Jacobi’s 

iteration method.  

………………………………………………………………………………. 

import numpy as np 
from scipy.linalg import solve 
 
def Jacobi(A, B, x, n): 

# computing the diagonal matrix 
    D = np.diag(A) 
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# computing the sum of upper and  
#lower triangular matrix (R=U+L=A-D) 

    R = A - np.diagflat(D) 
# computing new solution from old solution    
    for i in range(n): 
        x = (B - np.dot(R,x))/ D 

        print(x) 
    return x 
 
'''___Main___''' 

 
A = eval(input('Enter the matrix A:')) 
# as np.array([[a11,a12],[a21,a22]]) 
 

B = eval(input('Enter the matrix B:'))# as [b1,b2] 
x = eval(input('Enter guess of x:'))  # as [x1,x2] 
n = eval(input('Enter the number of Iterations:')) 
 

x = Jacobi(A, B, x, n) 
# Direct command that is solve to find the solution of a set of linear equations 
 print ('Solution using the solve command:', solve(A, B)) 
………………………………………………………………………………………. 

 
After compiling the above python script and for the different matrices we have the 

following out puts: 

………………………………………………………… 
Enter the matrix A:np.array([[2,1],[3,7]]) 

Enter the matrix B:[3,5] 
Enter guess of x:[0,0] 
Enter the number of Iterations:25 
[1.5        0.71428571] 

[1.14285714 0.07142857] 
[1.46428571 0.2244898 ] 
[1.3877551  0.08673469] 
[1.45663265 0.11953353] 

[1.44023324 0.09001458] 
[1.45499271 0.0970429 ] 
[1.45147855 0.09071741] 
[1.4546413  0.09222348] 

[1.45388826 0.09086802] 
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[1.45456599 0.09119075] 
[1.45440463 0.09090029] 

[1.45454986 0.09096945] 
[1.45451528 0.0909072 ] 
[1.4545464  0.09092202] 
[1.45453899 0.09090869] 

[1.45454566 0.09091186] 
[1.45454407 0.090909  ] 
[1.4545455  0.09090968] 
[1.45454516 0.09090907] 

[1.45454546 0.09090922] 
[1.45454539 0.09090909] 
[1.45454546 0.09090912] 
[1.45454544 0.09090909] 

[1.45454545 0.0909091 ] 
Solution using the solve command: [1.45454545 0.09090909] 
 
 Hence the solution is (1.4545, 0.0909) 

 
………………………………………………………… 

 
Enter the matrix A:np.array([[5,-2,3],[-3,9,1],[2,-1,-7]]) 
Enter the matrix B:[-1,2,3] 
Enter guess of x:[1,1,1] 

Enter the number of Iterations:25 
[-0.4         0.44444444 -0.28571429] 
[ 0.14920635  0.12063492 -0.60634921] 
[ 0.21206349  0.33932981 -0.4031746 ] 

[ 0.17763668  0.33770723 -0.41645755] 
[ 0.18495742  0.32770751 -0.42606198] 
[ 0.18672019  0.33121492 -0.42254181] 
[ 0.18601105  0.33141138 -0.42253922] 

[ 0.18608808  0.33117471 -0.4227699 ] 
[ 0.18613182  0.33122602 -0.42271408] 
[ 0.18611885  0.33123439 -0.42270891] 
[ 0.1861191   0.3312295  -0.42271381] 

[ 0.18612009  0.33123012 -0.42271304] 
[ 0.18611987  0.33123037 -0.42271285] 
[ 0.18611986  0.33123027 -0.42271295] 
[ 0.18611988  0.33123028 -0.42271294] 

[ 0.18611987  0.33123029 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 
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[ 0.18611987  0.33123028 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 

[ 0.18611987  0.33123028 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 

[ 0.18611987  0.33123028 -0.42271293] 
[ 0.18611987  0.33123028 -0.42271293] 
Solution using the solve command: [ 0.18611987  0.33123028 -0.42271293] 
 

Hence the solution is (0.186, 0.331, -0.423) 
………………………………………………………………. 
 
Enter the matrix A:np.array([[20,1,-2],[3,20,-1],[2,-3,20]]) 

Enter the matrix B:[17,-18,25] 
Enter guess of x:[0,0,0] 
Enter the number of Iterations:25 
[ 0.85 -0.9   1.25] 

[ 1.02  -0.965  1.03 ] 
[ 1.00125 -1.0015   1.00325] 
[ 1.0004   -1.000025  0.99965 ] 
[ 0.99996625 -1.0000775   0.99995625] 

[ 0.9999995  -0.99999712  0.99999175] 
[ 0.99999903 -1.00000034  1.00000048] 
[ 1.00000007 -0.99999983  1.00000005] 
[ 1.         -1.00000001  1.00000002] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
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Solution using the solve command: [ 1. -1.  1.] 
 

Hence the solution is (1, -1, 1) 
............................................................................................................................................... 
 
Enter the matrix A:np.array([[10,2,-1],[1,8,3],[-2,-1,10]]) 

Enter the matrix B:[7,-4,9] 
Enter guess of x:[0,0,0] 
Enter the number of Iterations:25 
[ 0.7 -0.5  0.9] 

[ 0.89  -0.925  0.99 ] 
[ 0.984  -0.9825  0.9855] 
[ 0.99505   -0.9925625  0.99855  ] 
[ 0.9983675  -0.9988375   0.99975375] 

[ 0.99974288 -0.99970359  0.99978975] 
[ 0.99991969 -0.99988902  0.99997822] 
[ 0.99997562 -0.99998179  0.99999504] 
[ 0.99999586 -0.99999509  0.99999695] 

[ 0.99999871 -0.99999834  0.99999966] 
[ 0.99999963 -0.99999971  0.99999991] 
[ 0.99999993 -0.99999992  0.99999996] 
[ 0.99999998 -0.99999997  0.99999999] 

[ 0.99999999 -1.          1.        ] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 
[ 1. -1.  1.] 

Solution using the solve command: [ 1. -1.  1.] 
 
Hence the solution is (1, -1, 1) 
………………………………………………………………………. 


