

1
Ref: developed with the help of online study material for Methods of Matrix Inversion

Jacobi’s Iteration Method
 MPHYCC-05 unit IV (Sem.-II)

Jacobi’s Iteration method

Jacobi’s method in numerical linear algebra is an iterative method to compute the

solution of a strictly diagonally dominant system of linear equations. The method

is named after Carl Gustav Jacob Jacobi. The method is a shorter version of

the Jacobi transformation method of matrix diagonalization. The process adopted

by this method for solving a set of linear equations is as follows.

Let us assume a set of linear equations in the matrix form is as follows:

AX = B

Where

Further, the matrix A can be decomposed into a diagonal component (D), a strictly

lower triangular part (L) and a strictly upper triangular component (U) as:

A=D + L + U

Where

https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

2
Ref: developed with the help of online study material for Methods of Matrix Inversion

Moreover, the solution can be obtained iteratively via using the following relation:

 ()

Where and are the k
th
 and (k+1)

th
iteration of X. The elements

of can be computed using the element-based formula:

(∑

)

Thus new value of X is calculated after putting the previous iterative value of X in

the above equation till the required accuracy is achieved. However, we overwrite,

 with

. The important thing is that the method should be converging for

having a solution. And the sufficient but not necessary condition for the method to

converge is that the matrix is strictly diagonally dominant. That means for each

row the absolute value of diagonal term is greater than the sum of the absolute

values of the other terms:

| | ∑ | |

However, the method sometimes converges even if these conditions are not

satisfied. Moreover, the standard convergence condition for any iterative method is

defined in terms of the spectral radius, ρ() of the iteration matrix. And the spectral

radius of the matrix is equal to the largest absolute value of its eigenvalues. The

convergence condition for the method is when the spectral radius, ρ() of the

iteration matrix is less than 1; thus

3
Ref: developed with the help of online study material for Methods of Matrix Inversion

 ()

The method is simple and numerically robust and each iterations quite fast.

However, the method is computing the independent variables of the linear

equations in parallel and independent way. Therefore the method might require

much iteration as well as good memory power of computational system. In-order to

understand the process completely, we start with a motivational example as given

below.

4
Ref: developed with the help of online study material for Methods of Matrix Inversion

Python script is given below to solve the set of linear equations using Jacobi’s

iteration method.

……………………………………………………………………………….

import numpy as np
from scipy.linalg import solve

def Jacobi(A, B, x, n):

computing the diagonal matrix
 D = np.diag(A)

5
Ref: developed with the help of online study material for Methods of Matrix Inversion

computing the sum of upper and
#lower triangular matrix (R=U+L=A-D)

 R = A - np.diagflat(D)
computing new solution from old solution
 for i in range(n):
 x = (B - np.dot(R,x))/ D

 print(x)
 return x

'''___Main___'''

A = eval(input('Enter the matrix A:'))
as np.array([[a11,a12],[a21,a22]])

B = eval(input('Enter the matrix B:'))# as [b1,b2]
x = eval(input('Enter guess of x:')) # as [x1,x2]
n = eval(input('Enter the number of Iterations:'))

x = Jacobi(A, B, x, n)
Direct command that is solve to find the solution of a set of linear equations
 print ('Solution using the solve command:', solve(A, B))
……………………………………………………………………………………….

After compiling the above python script and for the different matrices we have the

following out puts:

…………………………………………………………
Enter the matrix A:np.array([[2,1],[3,7]])

Enter the matrix B:[3,5]
Enter guess of x:[0,0]
Enter the number of Iterations:25
[1.5 0.71428571]

[1.14285714 0.07142857]
[1.46428571 0.2244898]
[1.3877551 0.08673469]
[1.45663265 0.11953353]

[1.44023324 0.09001458]
[1.45499271 0.0970429]
[1.45147855 0.09071741]
[1.4546413 0.09222348]

[1.45388826 0.09086802]

6
Ref: developed with the help of online study material for Methods of Matrix Inversion

[1.45456599 0.09119075]
[1.45440463 0.09090029]

[1.45454986 0.09096945]
[1.45451528 0.0909072]
[1.4545464 0.09092202]
[1.45453899 0.09090869]

[1.45454566 0.09091186]
[1.45454407 0.090909]
[1.4545455 0.09090968]
[1.45454516 0.09090907]

[1.45454546 0.09090922]
[1.45454539 0.09090909]
[1.45454546 0.09090912]
[1.45454544 0.09090909]

[1.45454545 0.0909091]
Solution using the solve command: [1.45454545 0.09090909]

 Hence the solution is (1.4545, 0.0909)

…………………………………………………………

Enter the matrix A:np.array([[5,-2,3],[-3,9,1],[2,-1,-7]])
Enter the matrix B:[-1,2,3]
Enter guess of x:[1,1,1]

Enter the number of Iterations:25
[-0.4 0.44444444 -0.28571429]
[0.14920635 0.12063492 -0.60634921]
[0.21206349 0.33932981 -0.4031746]

[0.17763668 0.33770723 -0.41645755]
[0.18495742 0.32770751 -0.42606198]
[0.18672019 0.33121492 -0.42254181]
[0.18601105 0.33141138 -0.42253922]

[0.18608808 0.33117471 -0.4227699]
[0.18613182 0.33122602 -0.42271408]
[0.18611885 0.33123439 -0.42270891]
[0.1861191 0.3312295 -0.42271381]

[0.18612009 0.33123012 -0.42271304]
[0.18611987 0.33123037 -0.42271285]
[0.18611986 0.33123027 -0.42271295]
[0.18611988 0.33123028 -0.42271294]

[0.18611987 0.33123029 -0.42271293]
[0.18611987 0.33123028 -0.42271293]

7
Ref: developed with the help of online study material for Methods of Matrix Inversion

[0.18611987 0.33123028 -0.42271293]
[0.18611987 0.33123028 -0.42271293]

[0.18611987 0.33123028 -0.42271293]
[0.18611987 0.33123028 -0.42271293]
[0.18611987 0.33123028 -0.42271293]
[0.18611987 0.33123028 -0.42271293]

[0.18611987 0.33123028 -0.42271293]
[0.18611987 0.33123028 -0.42271293]
Solution using the solve command: [0.18611987 0.33123028 -0.42271293]

Hence the solution is (0.186, 0.331, -0.423)
……………………………………………………………….

Enter the matrix A:np.array([[20,1,-2],[3,20,-1],[2,-3,20]])

Enter the matrix B:[17,-18,25]
Enter guess of x:[0,0,0]
Enter the number of Iterations:25
[0.85 -0.9 1.25]

[1.02 -0.965 1.03]
[1.00125 -1.0015 1.00325]
[1.0004 -1.000025 0.99965]
[0.99996625 -1.0000775 0.99995625]

[0.9999995 -0.99999712 0.99999175]
[0.99999903 -1.00000034 1.00000048]
[1.00000007 -0.99999983 1.00000005]
[1. -1.00000001 1.00000002]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

8
Ref: developed with the help of online study material for Methods of Matrix Inversion

Solution using the solve command: [1. -1. 1.]

Hence the solution is (1, -1, 1)
...

Enter the matrix A:np.array([[10,2,-1],[1,8,3],[-2,-1,10]])

Enter the matrix B:[7,-4,9]
Enter guess of x:[0,0,0]
Enter the number of Iterations:25
[0.7 -0.5 0.9]

[0.89 -0.925 0.99]
[0.984 -0.9825 0.9855]
[0.99505 -0.9925625 0.99855]
[0.9983675 -0.9988375 0.99975375]

[0.99974288 -0.99970359 0.99978975]
[0.99991969 -0.99988902 0.99997822]
[0.99997562 -0.99998179 0.99999504]
[0.99999586 -0.99999509 0.99999695]

[0.99999871 -0.99999834 0.99999966]
[0.99999963 -0.99999971 0.99999991]
[0.99999993 -0.99999992 0.99999996]
[0.99999998 -0.99999997 0.99999999]

[0.99999999 -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]
[1. -1. 1.]

Solution using the solve command: [1. -1. 1.]

Hence the solution is (1, -1, 1)
……………………………………………………………………….

