

Estd. 1917

Quantum Field Theory M.Sc. $4^{\text {th }}$ Semester
 MPHYEC-1: Advanced Quantum Mechanics Unit III (Part 6)
 Topic: System of Fermions

Compiled b

Dr. Ashok Kumar Jha

Assistant Professor
Department of Physics, Patna University
Mob:7903067108, Email: ashok.jha1984@gmail.com

System of Fermions

For a system of fermions, the number of particles n_{k} in any state should be restricted to 0 and 1 , to be in accordance with Pauli's exclusion principle. Jordon and Wigner have shown that this condition could be realised by replacing the above commutation relations by the following anticommutation relations:

$$
\begin{equation*}
\left[a_{k}, a_{l}^{\dagger}\right]=\delta_{k l} \text { and }\left[a_{k}, a_{l}\right]_{+}=\left[a_{k}^{\dagger}, a_{l}^{\dagger}\right]_{+}=0 \tag{1}
\end{equation*}
$$

From equation (1), we have

$$
\begin{equation*}
a_{k} a_{k}^{\dagger}+a_{k}^{\dagger} a_{k}=1 \text { and } a_{k} a_{k}=a_{k}^{\dagger} a_{k}^{\dagger}=0 \tag{2}
\end{equation*}
$$

Again, we define the particle number operator in the $k^{t h}$ state N_{k} by

$$
\begin{equation*}
N_{k}=a_{k} a_{k}^{\dagger} \tag{3}
\end{equation*}
$$

Each N_{k} commutes with all the others and therefore they can be diagonalize simultaneously. The eigenvalue of N_{k} can be obtained by evaluating the square of $N_{k}{ }^{2}$,

$$
\begin{align*}
& N_{k}^{2}=a_{k} a_{k}^{\dagger} a_{k} a_{k}^{\dagger}=a_{k}^{\dagger}\left(a_{k} a_{k}^{\dagger}\right) a_{k}=a_{k}^{\dagger}\left(1-a_{k}^{\dagger} a_{k}\right) a_{k} \\
& \quad=a_{k}^{\dagger} a_{k}=N_{k} \tag{4}
\end{align*}
$$

Since the second term is zero by virtue of equation (2). N_{k} is diagonalized with eigen value n_{k} and therefore, $N_{k}{ }^{2}$ would also be diagonalized with eigenvalue $n_{k}{ }^{2}$. Hence equation (4) is equivalent to,

$$
\begin{equation*}
n_{k}^{2}=n_{k} \text { or } n_{k}^{2}-n_{k}=0 \text { or } n_{k}\left(n_{k}-1\right)=0 \tag{5}
\end{equation*}
$$

Which gives,

$$
\begin{equation*}
n_{k}=0,1 \tag{6}
\end{equation*}
$$

Thus, the eigenvalue of N_{k} are 0 and 1 . As in the case of bosons, we can define a number operator N representing the total number of particles by,

$$
\begin{equation*}
N=\sum_{k} N_{k} \tag{7}
\end{equation*}
$$

The eigenvalues of N are the positive integer including zero as before.
The expression

$$
\begin{equation*}
H=\sum_{k} \sum_{l} a_{k}^{\dagger} a_{l} \int\left(\frac{\hbar^{2}}{2 m} \cdot \nabla u_{k}^{*} \nabla u_{l}+V u_{k}^{*} u_{l}\right) d^{3} r \tag{8}
\end{equation*}
$$

(see https://www.patnauniversity.ac.in/e-content/science/physics/MScPhy24.pdf)
which was valid for bosons is also valid for fermions. Again, the energy eigenvalue is given by equation:

$$
\begin{equation*}
\int \nabla u_{k}^{*} \nabla u_{l} d^{3} r=\int u_{k}^{*} \nabla u_{l} d s-\int u_{k}^{*} \nabla^{2} u_{l} d^{3} r \tag{9}
\end{equation*}
$$

The following relations also result from the anticommutator rules in equation (1),
$a_{k}\left|n_{1}, n_{2}, \ldots, n_{k}>=(-1)^{s_{k}} n_{k}\right| n_{1}, n_{2}, \ldots, n_{k-1, \ldots}>$
$a_{k}^{\dagger}\left|n_{1}, n_{2}, \ldots, n_{k}>=(-1)^{s_{k}}\left(1-n_{k}\right)\right| n_{1}, n_{2}, \ldots, n_{k+1, \ldots}>$
$\left|n_{1}, n_{2}, \ldots, n_{k}\right\rangle=\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}} \ldots\left(a_{k}^{\dagger}\right)^{n_{k}} \ldots \mid 0>$
Where, $S_{k}=\sum_{r=1}^{k-1} n_{r}$
A representation for the operators a_{k} and a_{k}^{\dagger} can be obtained if the system has only one state. The number operator N_{k} has the eigenvalues 0 and 1 . Hence N_{k} can be represented by the diagonal matrix

$$
N_{k}=\left(\begin{array}{ll}
0 & 0 \tag{14}\\
0 & 1
\end{array}\right)
$$

Matrices for a_{k} and a_{k}^{\dagger} satisfy the condition

$$
\begin{align*}
& a_{k} a_{k}=a_{k}^{\dagger} a_{k}^{\dagger}=0 \text { are } \\
& a_{k}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } a_{k}^{\dagger}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \tag{15}
\end{align*}
$$

The kets representing the eigenvalues zero and one for the operator a_{k} can be expressed as:

$$
|0\rangle=\binom{1}{0} \quad \text { and }|1\rangle=\binom{0}{1}
$$

In real situation, the number of states of the system is infinite and not single as assumed. Hence, explicit simple matrix like the preceding one is not possible.

Reference:

1. An Introduction to Quantum Field Theory by Mrinal Dasgupta
2. QUANTUM FIELD THEORY A Modern Introduction by Michio Kaku
3. First Book of Quantum Field Theory by Amitabha Lahiri \& P. B. Pal
4. Quantum mechanics by G.S. Chaddha
