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Response Functions 
 

The idea behind linear response is that the response of a system to an external force depends on the strength 

of that force at all times during which the force acts on the system. That is, the response at time t depends 

on the history of the force’s action on the system. An appropriately weighted sum of the strength of the 

external force at each moment during the interaction will describe the overall response. Mathematically, 

therefore, we express the response as an integral over the history of the interaction, 
 

 
∆A(t) =               

  

  
 (1)  

 
 

The kernel K(t, τ) in this expression, which gives the weight for the strength of the external force at each 

time, is called the response function. The response function has two very important properties: 
 

 

• Time invariance: K depends only on the time interval between τ and t, not on the two times 
independently. More succinctly,  

K(t, τ) = K(t − τ)                        (2) 
 

• Causality: The system cannot respond until the force has been applied. This places an upper limit of t 
on the integration over the history of the external force. 

 

With these observations in place, we arrive at the standard formula describing the linear response of 
an observable A to an external force f(t), 
 

∆A(t) =                
  

  
 (3) 

 
 
Linear response – described by the response function K(t) – and linear regression – described by the 

time correlation function C(t) – are directly related to one another. To see the connection, consider a 

force f(t) which is constant with strength f for t ≤ 0 and is zero for t > 0. We have established two 

ways to describe the response of an observable A to this force: 
 

• Linear regression: ∆A(t) = βf C(t) 

 

• Linear response: ∆A(t) =                 
 

  
 

 
   

 
 
From this information, we conclude that the correlation function and response function are related 

by 

K(t) = −β  (t)θ(t)    (4) 
 
where θ(t) is the Heaviside function.  
Sometimes the linear response function is more conveniently expressed in the frequency domain, in 

which case it is called the frequency-dependent response function. In many physical situations,  

 
 

it plays the role of a susceptibility to a force and consequently is denoted by χ(ω), 
 

 
 

(5) 



 

 

This response function is often partitioned into real and imaginary parts, which can also be thought 
of as even and odd parts, respectively, 
 
 

 
 
Example: The response function for the classical linear harmonic oscillator can be quickly 

deduced from its time correlation function. Recall from the first example in this chapter that the 
time correlation function for the classical linear harmonic oscillator is 
 

   
Applying Eq.(4), we differentiate with respect to t and multiply by β =1/ kBT to determine 

 
 

 
This is the response function for the classical linear harmonic oscillator. 

 

Causality 
 

 

The equations relating these two functions are known as the Kramers-Kronig relations. In their 

most general form, they govern the response function as a function of the complex frequency z = 

ω+iϵ, though under most physical circumstances of interest they can be expressed in terms of 

real-valued frequencies alone.  

The relations arise from the causality requirement, which we originally expressed by requiring  

K(t)=0, ∀t< 0. It turns out that this requirement, along with the assumption that 

        
 

 
 converges, implies that the response function χ(z) is analytic on the upper half of the 

complex plane.  

Consider integrating the function 

 
 

around the contour in the complex plane shown in Figure 1.  

 
 

Fig.1 Contour in the complex frequency plane 
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The contour has been explicitly constructed to avoid the pole at z = ω0, so Cauchy’s integral 

theorem implies that 

 

 
 

We can also, however, integrate piecewise over each part of the contour; some manipulation with the 
residue theorem is required, but the final result is 

  
where P denotes the Cauchy principal value of the integral. Setting the two results above equal and 
solving for the response function, 

   
The decomposition of Eq.(10) into real and imaginary parts yields the Kramers-Kronig relations, 

  
This pair of equations provides a concise relationship between the real and imaginary parts of any 
response function χ(ω). 
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