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                      Dirac equation  and its solution 
(Pauli–Dirac representation) 

 

Dirac equation is given by  
(iγµ∂µ − m)ψ = 0. (1) 

 

As explained in the classroom we follow the  convention (Pauli–Dirac representation for 
Clifford algebra) which is based on the Pauli spin matrices and write the gamma 
matrices as: 
 

                                                       𝛾0 = (
1 0
0 −1

),    𝛾𝑖 = ( 0 𝜎𝑖

−𝜎𝑖 0
).                             (2)          

 
 

These  matrices satisfy the Clifford algebra {γµ, γν} = 2gµν. We rewrite the Dirac 
equation  in the form similar to that of Schrödinger equation, 

                                                  𝑖ℏ
𝜕

𝜕𝑡
𝜓 = 𝑐(�⃗�. �⃗⃗� + 𝑚𝑐𝛽)𝜓,                                      (3) 

where �⃗⃗� = −𝑖ℏ∇⃗⃗⃗ (to be distinguished with c-number  �⃗⃗�  ).We take h̄ = c = 1  

as usual.  The matrices �⃗� 𝑎𝑛𝑑 β are defined by 
 

                                                      𝛽 = 𝛾0,         �⃗� = 𝛾0�⃗� (−𝜎𝑖 0
0 𝜎𝑖

).                         (4)

 

In general , for momentum 

�⃗⃗⃗⃗�= p(sin θ cos φ, sin θ sin φ, cos θ),(spherical coordinates) 

we define two-component eigen-states of the matrix �⃗�. �⃗⃗� as : 

                                             𝜒 + (�⃗�) = (
𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2
𝑒𝑖𝜙

),                            (5)  

 

                                            𝜒 − (�⃗�) = (
−𝑠𝑖𝑛

𝜃

2
𝑒−𝑖𝜙

𝑐𝑜𝑠
𝜃

2

),                                      (6)  

Which satisfy 

                                    (�⃗�. �⃗�)𝜒 ±  (�⃗�) = ±𝑝𝜒 ± (�⃗�).                                                (7)  

Using χ±, we can write down solutions to the Dirac equation.



− 

 The Positive energy solutions with momentum �⃗�  have space and time dependence         
ψ±(x, t)  =  u±(p)e−iEt+iṗ·ẋ.    

The  subscript  ± refers  to  the  helicities  ±1/2.   The Dirac equation then reduces to 
an equation with no derivatives: 

Eψ = (α ·�⃗� + 𝑚𝛽)𝜓                                                                                          (8) 

where  ̇�⃗�  is  the  momentum  vector  (not  an  operator).   The explicit  solutions  can  
be obtained easily as 

𝑢+(𝑝) =
1

√𝐸 + 𝑚
(

(𝐸 + 𝑚)𝜒+(�⃗�)

𝑝𝜒+(�⃗�)
),                                    (9) 

                              

                    𝑢−(𝑝) =
1

√𝐸+𝑚
(

(𝐸 + 𝑚)𝜒−(�⃗⃗⃗�)

−𝑝𝜒−(�⃗⃗⃗�)
)                                                              (10)

  

We adoptthe  normalization 𝑢±
† (𝑝)𝑢±(𝑝) = 2𝐸 𝑎𝑛𝑑 𝐸 = √�⃗⃗�2 + 𝑚2.    

Negative energy solutions must be filled in the vacuum and their “holes”are regarded 

as anti-particle states. Therefore, it is convenient to assign momentum −�⃗⃗� and energy 

−𝐸 = −√�⃗⃗�2 + 𝑚2.  

The solutions have space and time dependence 𝜓±(𝑥, 𝑡) = 𝜐±(𝑝)𝑒+𝑖𝐸𝑡−𝑖�⃗⃗�.�⃗⃗�.The Dirac 

equation again reduces to an equation with no derivatives: 

−Eψ = (−α ·�⃗⃗�  + mβ)ψ. (11) 

Explicit solutions are given by 

𝜐+(𝑝) =
1

√𝐸 + 𝑚
(

−𝑝𝜒−
(�⃗�)

(𝐸 + 𝑚)𝜒−
(�⃗�)

),                           (12) 

  

 

                                𝜐−(𝑝) =
1

√𝐸+𝑚
(

𝑝𝜒+
(�⃗⃗⃗�)

(𝐸 + 𝑚)𝜒+
(�⃗⃗⃗�)

),                             (13) 

It is convenient to define “barred” spinors ū = u†γ
0 = u† and v̄ = v†γ

0.  The 
combination ūu is a Lorentz-invariant, ūu = 2m, and similarly, v̄v =    2m.  The 
combination ūγµu transforms as a Lorentz vector: 

ūκ(p)γµuλ(p) = 2pµδκ,λ, (14) 

where κ, λ = ±, and similarly, 

v̄κ(p)γµvλ(p) = 2pµδκ,λ. (15) 

 

 



 

 

They can be interpreted as the “four-current density” which generates electromagnetic  

field: ūγ
0
u = u†u is the “charge density,” and ūγiu = u†αiu is the “current 

Density”.  

 
Further the matrix 

 𝛾5 = iγ0
γ

1
γ

2
γ

3 =(
0 1
1 0

)           
 

(16) 
 

commutes with the Hamiltonian in the massless limit m → 0. In fact, at high energies 
E m, the solutions are almost eigenstates of γ5, with eigenvalues +1 for u+  and v−, 
and    1 for u− and v+.  The eigenvalue of γ5  is called “chirality.” Therefore chirality is 
a good quantum number in the high energy limit. Neutrinos have chirality minus so 
they do not have states with positive chirality. 
The diagrams for positive and negative energy states is given in reference number (2). 
Doubts can be cleared in our Whatsapp group. 
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