

1
Ref: developed with the help of online study material for SciLab

In this chapter, we learn about the some feature of SciLab. We

present how to install the software and also learn to get help

with provided in-line documentation. We learn the important

feature of SciLab such as management of real matrices and

linear algebra. We also learn how to define the function and

management of input and output variables. Moreover, we also

learn about SciLab’s graphical features such as 2D plots many

more.

“

SCILAB: A Short Introduction
MPHYCC-05 unit II (Sem.-II)

Document in a Glance:

 1.1: Install SciLab

 1.2: Getting help in SciLab

 1.2.1: Console mode

 1.2.2: The editor

 1.2.3: Exec mode

 1.3: Variables

 1.3.1: Creating real variables

 1.3.2: Variable name

 1.3.3: Comments and continuation lines

 1.3.4: Basic mathematical function

 1.3.5: Basic Boolean variable

 1.3.6: Complex variable

 1.3.7: String variable

 1.3.8: Dynamic variable

2
Ref: developed with the help of online study material for SciLab

 1.4: Matrix

 1.4.1: Create a matrix

 1.4.2: Query matrix

 1.4.3: Accessing the element of matrix

 1.4.4: Low level operation with matrix

 1.4.5: High level operation with matrix

 1.5: Using looping and branching

 1.5.1: The if statement

 1.5.2: The for statement

 1.5.3: The while statement

 1.5.4: The break and continue statements

 1.6: Function

 1.7: Plotting

 1.7.1: 2D plotting

Scilab is a programming language having a collection of numerical algorithms which can

handle many aspects of scientific computing problems. Scilab is also an interpreted

language which generally allows to-get faster development processes.

Scilab is free software and it is open source software, provided under the Cecill license.

Most of the time, the user downloads and installs provides Windows, Linux and Mac OS

executable versions. SciLab have the capabilities to solve the various problems belongs

to the different flavour such as linear algebra, Polynomials, Interpolation, Linear & non-

linear, ordinary differential equations, signal processing, statistics, and many more.

1.1: Install SciLab

Scilab binary source provided for 32 and 64 bits both platforms can be downloaded from

http://www.scilab.org/download for Windows, Linux, or Mac and can be installed

easily. Structure of the software will be as shown in the following figure.

3
Ref: developed with the help of online study material for SciLab

1.2: Getting help in SciLab

Open the SciLab software and type help in the console the press <Enter>.

help

The command result into a console having document about various topic. One can try to

browse the integrated help, find the optimization section and then click on the concern

item to display its help. Another way to get help about a particular function is help

followed by the name of the function which help is required. For example we can get

help about plot by typing the following command in the console.

help plot

Scilab automatically opens the associated entry in the help. There are several ways of

using Scilab here we discussed the following three methods:

 using the console in interactive mode

 using the exec function against a file

 using batch processing

1.2.1: Console mode

The first method is typing a command on console to use SciLab interactively. In the

following example, the function disp is used in interactive mode to print out the string

"Hello World! How are you?".

-->sp = "Hello World! How are you?"

4
Ref: developed with the help of online study material for SciLab

sp =

"Hello World! How are you?"

-->disp (s)

sp = "Hello World! How are you?"

In the previous session, we did not type the characters "-->" which is the prompt, and

which is managed by Scilab. We only type the statement sp = "Hello World! How are

you?" with our keyboard and then hit the <Enter> key. Scilab answer is sp = "Hello

World! How are you?" Then we type disp(s) and Scilab answer is "Hello World! How are

you?"

If you type any command such as below

-->disp

Then we can type on the <Tab> key, makes a list-box to appear in the console, where

items correspond to all functions which begin with the letters "disp". We can then use the

up and down arrow keys to select the function we want.

1.2.2: The editor

This editor allows managing several files at the same time. The editor can be accessed

from the menu of the console, under the Applications > Editor menu, or from the console,

as presented in the following session.

--> editor ()

The editor provides a fast access to the inline help. Suppose that we have selected the

disp statement, when we right-click in the editor, we get the context menu, where the

Help about "disp" entry allows to open the help associated with the disp function.

1.2.3: Exec mode

When we need to execute the several commands, it may be more convenient to write

these statements into a file with Scilab editor. The commands located in such a file can be

executed by using the exec function can be used, followed by the name of the script. The

script file generally has the extension .sce or .sci, depending on its content:

 The files having the .sci extension are containing Scilab functions and executing them

loads the functions into Scilab environment but does not execute them,

5
Ref: developed with the help of online study material for SciLab

 On the other hand the files having the .sce extension are containing both Scilab

functions and executable statements. Executing a .sce file has generally an effect such

as computing several variables and displaying the results in the console.

Assume that the content of the file test.sce is the following.

disp("Hello World! How are you?")

In the Scilab console, we can use the exec function to execute the content of this script.

-->exec (" test .sce")

-->disp Hello World! How are you?")

Hello World! How are you?

Scilab is an interpreted language that it allows to manipulate variables in a very dynamic

way. In this section, we learn the basic features of the language; how to create a real

variable, and what elementary mathematical functions can be applied to a real variable.

 It is worth to state in Scilab, everything is a matrix. To be more accurate, we should

write all real, complex, Boolean, integer, string and polynomial variables are matrices.

Lists and other complex data structures such as tlists and mlists are not matrices but can

contain matrices.

1.3: Variables

Scilab is an interpreted language, thus there is no need to declare a variable before using

it. Variables are created at the moment where they are required first.

1.3.1: Creating real variables

We use “=” to set the variable on the left hand side to its value on the right hand side. The

value of the variable is showed each time a statement is executed.

-->x=3

x =

 3

-->x = x * 2

x =

 6

The semicolon “;” character at the end of the line can suppressed it to display.

6
Ref: developed with the help of online study material for SciLab

-->y=3;

-->y=y*3;

Following are the arithmetic operators and having the usual meaning.

1.3.2: Variable name

Variable names can be as long as the user wants but it should not me more than 24

characters. All ASCII letters from "a" to "z", from "A" to "Z" and from "0" to "9" are

allowed, with the additional letters "%", " ", "#", "!", "$", "?". However, the names which

first letter is "%" have a special meaning in Scilab, which presents the mathematical

predefined variables. Scilab is case sensitive, thus upper and lower case letters are

considered to be different by Scilab. For example:

-->B = 23

B =

23.

-->b = 2
b =

2.

-->B

B =

23.

-->b

b =

2.

7
Ref: developed with the help of online study material for SciLab

1.3.3: Comments and continuation lines

In the SciLab, any line begins with two slashes "//" is considered as a comment and is

ignored. However, comment out a block of lines is not possible in SciLab as it possible in

C using “/* ………. */”.

Further, if the executed statement is too long to express in a single line, then it breaks into

many lines which ends with two dots. These dots are considered to be the start of a new

continuation line. Followings are the example of comment and continuation lines.

-->// This is my comment in SciLab.

-->y =5..

- - >+6..

- - >+7..

1.3.4: Basic mathematical function

Some of the basic trigonometry and other mathematical functions are listed below. Most

of these functions take one input argument and return one output argument:

Below is the example:
--> x=cos(5)

 x =

8
Ref: developed with the help of online study material for SciLab

 0.2836622

--> y=sin(5)

 y =

 -0.9589243

--> x^2+y^2

 ans =
 1.0000000

In Scilab, there are several mathematical variables which names are begins with a percent

"%" character and are known as predefined variables. Some of them are summarized

below.

13.5: Basic Boolean variable

Boolean are the logical variables and can store true or false values. In Scilab, true is

denoted with "%t" or "%T" and false is written with "%f" or "%F". Followings are the

list of several comparison operators which are available in Scilab. These operators return

Boolean values and take as input arguments all basic data types such as real and complex

numbers, integers and strings.

We can see the operation of Boolean operator in the following example:

9
Ref: developed with the help of online study material for SciLab

--> a= (0==1)

 a =

 F

1.3.6: Complex variable

Complex variables are stored in a pair of float in SciLab. The predefined variable "%i"

represents the mathematical imaginary number i with i
2
 = -1. Further, the character " ’ "

used to find the complex conjugate, and it will be clear from following example.

--> y=2+3*%i

 y =

 2. + 3.i
--> x=y'

 x =

 2. - 3.i

--> real(x)

 ans =

 2.

--> imag(x)

 ans =

 -3.

--> isreal(y)

ans =

 F

1.3.7: String variable

Strings can be stored in variables such that they are delimited by double quotes "" ". The

concatenation operation is available from the "+" operator.

--> x="coocoo"

 x =

 "coocoo"

--> y="bar"

 y =

 "bar"

--> x+y
 ans =

 "coocoobar"

10
Ref: developed with the help of online study material for SciLab

1.3.8: Dynamic variable

In the Scilab, we create and manage the variable, however, the Scilab allow changing the

type of variable dynamically. Moreover, is not a typed language, that is, we do not have

to declare the type of a variable before setting its content. Moreover, the type of a

variable can change during the life of the variable. This nature of the Scilab can be

understood from the following example.

--> y=2

 y =

 2.

--> y^4

 ans =

 16.
--> y="Ram"

 y =

 "Ram"

--> y+"Darvar"

 ans =

 "RamDarvar"

1.4: Matrix

In this section, we learn how to create a various type of matrix, and access the elements

of matrix. We also learn about different types of operator associated with matrix. The

components of matrix are; the number of rows, the number of columns and different types

of data.

The data type can be real, Boolean, string and polynomial. In matrix, simplest one is a

vector that could be a row or a column matrix. Scalar variable is a matrix with 1 row and

1 column.

Most basic linear algebra operations, such as addition, subtraction, transpose or dot

product are performed by a compiled, optimized, source code. These operations are

performed with the common operators "+", "-", "*" and the single quote "' ", so that, at

the Scilab level, the source code is both simple and fast. The eigenvalue/eigenvector

problems are also performed by optimized sourced code using slash "/"or backslash "\".

11
Ref: developed with the help of online study material for SciLab

1.4.1: Create a matrix

Following syntax is the efficient way to create a matrix:

 Use square brackets []

 Use commas "," to separate the values on different columns,

 Use semicolons ";" separate the values of different rows.

Below is the example to create nxm matrix.

A = [a11 , a12 , ... , a1m; a21 , a22 , ... , a2m; ...; an1 , an2 , ... , anm].

In the following example, we create a 3x 2 matrix of real values.

-->A = [1 , 2 ; 3 , 4; 5, 6]

A =

1. 2.

3. 4.

5. 6.

Matrix comes with different methods some of them are mentioned below.

--> // Creating empty matrix

--> B=[];

--> B

 B =

 []

--> // Creating matrix of 1

--> A=ones(2,3)
 A =

 1. 1. 1.

 1. 1. 1.

12
Ref: developed with the help of online study material for SciLab

1.4.2: Query matrix

The following method allows changing and updating the matrix.

The size operator returns two out-puts; number of rows nr and number of columns nc.

Further, size function has also the following syntax.

nr = size (A , sel) which allows to get only the number of rows or the number of

columns of matrix A. The syntax sel can have the following values

sel=1 or sel="r", returns the number of rows,

sel=2 or sel="c", returns the number of columns.

sel="*", returns the total number of elements, that is, the number of columns times the

number of rows.

--> A=[1,2,3,4;5,6,7,8;9,10,11,12];

--> [a,b]=size(A)
 a =

 3.

 b =

 4.

--> nr=size(A,"r")

 nr =

 3.

--> nc=size(A,2)

 nc =

 4.

--> size(A,"*")

 ans =
 12.

1.4.3: Accessing the element of matrix

Element of the matrix can be easily access by using the following methods:

 Element by element with the syntax A (i, j)

 A range of index value with the help of colon (:) operator

13
Ref: developed with the help of online study material for SciLab

--> A(1,1)

 ans =

 1.

--> A(3,4)

 ans =

 12.

The operation with colon (:) is very helpful to access the range of index of the matrix.

There are different methods associated with the colon and these are listed in the above

list.

--> A(1:2,3:4)
 ans =

 3. 4.

 7. 8.

--> A

 A =

 1. 2. 3. 4.

 5. 6. 7. 8.

 9. 10. 11. 12.

--> A(:,:)

 ans =

 1. 2. 3. 4.

 5. 6. 7. 8.
 9. 10. 11. 12.

More about colon operator

--> //creating a vector

--> v=1:4
 v =

14
Ref: developed with the help of online study material for SciLab

 1. 2. 3. 4.

--> //creating a vector with step size 2

--> v1=1:2:10

 v1 =

 1. 3. 5. 7. 9.

--> //creating a vector with step size -3
--> v2=10:-3:1

 v2 =

 10. 7. 4. 1.

--> A=[1,2,3,4;5,6,7,8;9,10,11,12];

--> vr=1:3;

--> vc=2:4;

--> A(vr,vc)

 ans =

 2. 3. 4.

 6. 7. 8.

 10. 11. 12.

The dollar $ operator allows to get the elements from the end of the matrix. The special

operator $ signifies "the index corresponding to the last" row or column, depending on

the context. The index $-i corresponds to the index l-i, where l is the number of

corresponding rows or columns. The example and the list given below can easily explain

the use of the operator.

--> A($-1,$-2)

 ans =

 6.

1.4.4: Low level operation with matrix

All common algebra operators, such as +, -, * and /, are available with real matrix

provided that the matrix size should be compatible for the operation.

--> A=[1,2;3,4]

 A =

15
Ref: developed with the help of online study material for SciLab

 1. 2.

 3. 4.

--> B=[5,6;7,8]

 B =

 5. 6.

 7. 8.
--> A+B

 ans =

 6. 8.

 10. 12.

--> A-B

 ans =

 -4. -4.

 -4. -4.

--> A*B

 ans =

 19. 22.

 43. 50.
--> A/B

 ans =

 3. -2.

 2. -1.

If we use dot (.) before these operation then it will lead to the element wise operation.

Details are listed in the following list.

--> A=[1,2;3,4];

--> B=[5,6;7,8];

--> A*B

 ans =

 19. 22.

 43. 50.

--> A.*B

 ans =

16
Ref: developed with the help of online study material for SciLab

 5. 12.

 21. 32.

1.4.5: High level operation with matrix

Scilab comes with the complete linear algebra library. However, the list given below can

summarize the different method associated with the matrix.

1.5: Using looping and branching

In this section we learn about if, for, while statements. We also learn about break and

continue statements.

1.5.1: The if statement

The if statement executed if the condition is satisfied. The if uses a Boolean variable to

do its choice: if the boolean is true, then the statement is executed. A condition is closed

with end keyword. The syntax starts with if followed by a condition and then afterwards

having some action to do and closed with end keyword.

i = 2

if (i == 2) then

disp (" Hello! How are you?")

else

disp (" Goodbye !")
end

17
Ref: developed with the help of online study material for SciLab

The above script produces “Hi! How are you?”

When there are several combine conditions then elseif statement is useful as clear from

the given example.

i = 2

if (i == 1) then

disp (" Hello! How are you?")

elseif (i == 2) then

disp (" Goodbye! I will see you again")

elseif (i == 3) then

disp (" Nothing to see!")

else

disp ("Nothing to say !")

end

However, the elseif statement can combine as many conditions as we want but resulting

into complicated branching. In this case select statement will be useful. It allows

performing the statement corresponding to the case keyword. There can be as many

branches as required. Example demonstrates the use of select statement.

i = 2*3

select i

case 1

disp ("One")

case 2

disp ("Two")

case 6
disp (" Three ")

else

disp (" Other ")

end

The above script produces “Three” as expected.

1.5.2: The for statement

The for statement allows to perform a given action several times that is looping.

Script

for i = 9 : - 2 : 1

 disp(i)

 end

18
Ref: developed with the help of online study material for SciLab

output

 9.

 7.

 5.

 3.

 1.

1.5.3: The while statement

The while statement gets executed till when Boolean expression is true:

Script

p = 0

i = 1

while (i <= 20)

p = p + i

i = i + 1

end

output

--> p

 p =

 210.

--> i

 i =

 21.

1.5.4: The break and continue statements

The break statement allows interrupting a loop and used if some condition is satisfied, the

loops should not be continued further. However, the continue statement allows to go on

to the next loop, so that the statements in the body of the loop are not executed this time.

When the continue statement is executed, Scilab skips the other statements and goes

directly to the while or for statement and evaluates the next loop.

Script
p = 0

i = 1

while (%t)

 if(i>14) then

 break

 end

19
Ref: developed with the help of online study material for SciLab

p = p + i

i = i + 1

end

disp(p)

disp(i)

output
 105.

 15.

In the following example, we compute the sum s = 1 + 2 + 4 + 5 + 7+8+10+11 = 48. The

modulo (i,3) function returns 0 if the number i is multiple of 3. In this situation, the script

increments the value of i and use the continue statement to go on to the next loop.

Script

p=0

i = 1

while (i <= 12)
if (modulo (i , 3) == 0) then

 i=i+1

 continue

else

 p = p + i

 i = i + 1

end

end

output

--> p

 p =
 48.

--> i

 i =

 13.

1.6 Function

In this section we learn to create and load the function in Scilab. The sequence to create a

function is as follows.

outputvariable = myfunction (inputvariable)

The name of the function is myfunction, inputvariable is the input arguments and

outputvariable is the output arguments. y=cos(x) is an example of a function. However,

20
Ref: developed with the help of online study material for SciLab

the number of input and output arguments can be more than one. Syntax for a function

having fixed number of arguments is the following:

[o1 , ... , on] = myfunction (i1 , ... , in)

The input and output arguments are separated by commas ",". The input arguments are

surrounded by opening and closing braces, while the output arguments are surrounded by

opening and closing square braces.

Function is Scilab is defined with the help of two keywords; function and endfunction as

shown in script as below.

function y = myfunction (x)

y = x**2a

endfunction

The possible way to define the function: First way is to write the script on the console in

the interactive mode. Another way is to write the script in editor mode and then execute

it. There is one more way that is writing the script and then save it to with an extension

.sci. The .sci file can be used to load exec function which is clear from the following

example.

--> exec ("C:\Users\san\Desktop\test1.sci")
--> function y = myfunction (x)

--> y = x**2

--> endfunction

--> myfunction(4)

 ans =

 16.

Managing the output arguments: The function can be called in a various way and it is

clear from the following script:

function [y1, y2]=sant(x1, x2)

y1 = x1*x2

y2 = 3 * (x2**x1)

endfunction

// way to managing the function

--> exec('C:\Users\san\Desktop\test.sce', -1)

--> sant(2,3)

 ans =

 6.

21
Ref: developed with the help of online study material for SciLab

--> [y1,y2]=sant(2,3)

 y1 =

 6.

 y2 =

 27.

1.7: Plotting

In this section, we learn how to create 2D plots and contour plots. Then we learn to

design the title and the legend of our graphics. We use plot for 2D plot; contour for

contour plot, surf for 3D plot, histplot for histrogram and bar for bar plot and may more.

In-order to get the help about plot, we can write plot () in the console as below.

--> plot()

Most commonly used plot functions are mentioned below.

During the creation of a plot, we use several functions in order to create the data or to

configure the plot; some of them are listed below.

22
Ref: developed with the help of online study material for SciLab

1.7.1: 2D plotting

First way is to write the script on the console in the interactive mode. Another way is to

write the script in editor mode and then execute it. The following script will generate a

plot of quadratic and a cubic function.

function f1=function1(x)

f1 = x^2
endfunction

function f2=function2(x)

f2 = x^3

endfunction

xdata = linspace (1 , 2 , 10);

ydata1 = function1 (xdata);

plot (xdata , ydata1 , "+-")

ydata2 = function2 (xdata);

plot (xdata , ydata2 , "o-")

xtitle ("quardatic and cubic plot" , "X axis " , "Y axis ");

legend ("x^2" , "x^3");

We can export the file using interactive mode as File>Export to... menu of the graphics

window. We can then set the name of the file and its type.

