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Magnetic Reconnection

Magnetic topology
Before going into the discussion of magnetic reconnection, we need to understand the
concept  of  magnetic  topology and its  preservation.  For  this,  we note  that,  in  the
previous lectures, we have discussed the magnetohydrodynamics (MHD) model of
plasma. Moreover, for a plasma having zero electrical resistivity (or infinity magnetic
Reynolds  number  RM),  the  corresponding  dynamics  is  explained  by  ideal  MHD.
Under ideal MHD, Alfven's theorem of flux-freezing is satisfied and according to that
the magnetic field is completely frozen in the plasma. In previous lecture, we have
also mentioned one important consequence of Alfven's theorem. If two fluid elements
lie on a magnetic field line, then they would always lie on the same field line. We
may have two far-away fluid elements in the ideal plasma connected by a magnetic
field line.  No matter  what happens to the plasma or how it  evolves in time, this
connectivity  between  the  two  far-away  fluid  elements  remains  preserved  if  the
resistivity  is  zero.  The  preservation  of  such  connectivities  may  introduce  some
constraints on the dynamics of the system. Relevant to the discussion, it is worthy to
mention that topology (which is a branch of mathematics) deals with the different
transformations that preserve certain connectivities.

To further explain the concept of magnetic topology, lets consider two magnetic field
lines denoted by A and B. Figure 1 shows three configurations of the field lines in
different panels. The field line B can be wrapped around A as shown in panel (b) of
the figure. It should be noted that no cutting or pasting of field lines was necessary in
order to deform the configuration of panel (a) to the configuration of panel (b). We
show another possible configuration of these two field lines in panel (c) of the figure.
It must be clear that one has to cut and rejoin at least one field line in order to arrive
at this configuration. We say that the configurations of panel (a) and panel (b) are
topologically  equivalent,  whereas  the  configuration  of  panel  (c)  is  topologically
different  from the  other  two.  After  giving  the  general  idea,  let  us  now give  the
mathematical definition. If two magnetic configurations B1(r) and B2(r) are such that
one of them can be deformed into the other by continuous displacements without
cutting or pasting field lines anywhere, then the two magnetic configurations are said
to  have  the  same  magnetic  topology.  If  this  is  not  possible,  then  the  magnetic
topologies are different.
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If a plasma is ideal (i.e. has zero resistivity or infinite magnetic Reynolds number),
then its magnetic topology can never change. So, as a result of any dynamics, it has to
evolve  through  successive  configurations  which  are  all  topologically  equivalent.
However, in presence of small but non-zero resistivity, the magnetic topology can
change locally  by the  process  of  magnetic  reconnection  which we discuss  in  the
following section. 

Magnetic Reconnection
We discussed in the previous section that magnetic topology is exactly preserved in a
plasma with  zero  electrical  resistivity.  Now,  we aim to  understand  the  important
question: What happens if the plasma has a very small, but finite electrical resistivity
or  magnetic  diffusivity  (recall  from  the  previous  lectures,  if  η  represents  the
resistivity then λ=η/μ0 is magnetic diffusivity) or large magnetic Reynolds number
RM? In an attempt to answer this question, we know that the resistivity or magnetic
diffusivity appears in the induction equation: 
 

                                             ∂ B
∂ t

=∇×v×B+λ ∇ 2 B                -------  (1)

Moreover, we note that the magnetic diffusivity appears in the induction equation as a
coefficient in front of the second derivative magnetic field  B  (the diffusion term).
Because of this, even if the magnetic diffusivity is small and RM is large, its effect can
become important in a localized regions where the gradient in the magnetic field B is
large.  Large gradient  in  B  leads to an enhanced value of  ▽2B  in the region and,
therefore, producing a significant value of the diffusion term (λ▽2B). At this region,
magnetic energy associated with the magnetic field can decay with time because of
the effective diffusion. Since large gradients of magnetic field are associated with
large  current  densities  (as  J=(1/μ0)(▽xB)),  such  regions  are  often  called  current
sheets as they have intense values of current density. The region shown in color red
in figure 2 represents a current sheet. From the figure, it is clear that magnetic field
lines in across the current sheet are oppositely directed (hence magnetic field are in
opposite direction across the current sheet). Therefore, gradient in magnetic field is
very high at the current sheet. In a low-resistivity plasma, cutting and pasting of field
lines  can  take  place  within  current  sheets  due  to  the  diffusion  term  and  hence
magnetic topology can be changed locally. But the magnetic fields may be taken to be
frozen in the plasma outside the current sheets and magnetic topologies are preserved
everywhere except  in the current  sheets.  At the current  sheets,  the diffusion term
(λ▽2B) plays an important role and converts magnetic energy stored in the magnetic
into kinetic energy of the plasma and heat by locally changing the magnetic topology.
This process is known as magnetic reconnection. 



Sweet-Parker Model of magnetic reconnection: 
One of the traditional reconnection models, known as the Sweet-Parker model, was
proposed by Sweet and Parker. The Sweet-Parker model describes the steady state
magnetic  reconnection  across  a  current  sheet  by  approximately  solving  MHD
equations  for  a  steady  state  in  a  two-dimensional  Cartesian  geometry  for  an
incompressible plasma. 
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Since the plasma is incompressible, therefore the mass density ρ is constant and, as a

result, the mass continuity equation for a steady state ( ∂
∂ t

→0 ) modifies as:  

 

                                              
∂ρ

∂ t
+∇⋅(v ρ)=0        (as ∂

∂ t
→0 for a steady state)

                                                    ρ∇⋅v=0               (as ρ is constant)
 
Therefore, the continuity equation for incompressible steady state plasma is

  Current sheet  CURRENT SHEET



 
                                                     ∇⋅v=0                                ---------  (2)

The induction equation for the steady state is obtained by using ∂
∂ t

→0 in equation

(1) and it is:  
                                       
                                         ∇×v×B+λ ∇2 B=0                    ---------  (3)

To understand the physics of magnetic reconnection, let  us look at figure 2 more
carefully. The field lines ABCD and A'B'C'D' are moving with inward velocity vi

towards the central region. Eventually the central parts BC and B'C’ of these field
lines decay away. The part AB is moved to EO and the part A'B ’ f to E'O. These parts
originally  belonging  to  different  field  lines  now  make  up  one  field  line  EOE’.
Similarly the parts CD and C’D’ eventually make up the field line FPF’. We thus see
that  the  cutting  and  pasting  of  field  lines  take  place  in  the  current  sheet.  Since
plasmas from the top and the bottom in figure 2  push against the current sheet, the
plasma in the central region is eventually squeezed out sideways through the points 0
and P. Let v0 be the outward velocity with which reconnected field lines EOE' and
FPF’ move  away  from the  reconnection  region.  Our  aim  now is  to  estimate  the
incoming  velocity  vi which  essentially  gives  the  rate  at  which  the  reconnection
proceeds.

To calculate vi, in the Sweet-Parker model,  the differential equations (2) and (3) are
approximated by algebraic  equations  and showed that  rough estimates  of  various
quantities can be obtained. Let L be the width of the current sheet over which the
magnetic field decays, as indicated in figure 2. After the magnetic field has decayed,
the field-free plasma is squeezed through the points 0 and P.  We consider the speed
of outflowing plasma to be v0. If l be the thickness of the outflowing plasma, then the
continuity  equation  (2)  can  be  replaced  by  the  approximate  mass  conservation
condition

                                                    v i L≈v0 l                                   -------- (4)

From the momentum transport equation, the fluid parcels are pushed by Lorentz force
and, hence, the force is responsible for the generation of the outflow. Then we expect
that  the  kinetic  energy  associated  with  the  outflow  should  be  comparable  to
themagnetic energy stored in the current sheet. Therefore, we have

                                                     
1
2
ρv 0

2≈
B2

2μ0

                          ------- (5)



                                                    v 0≈
B

√μ0ρ
=va                       ------- (6)

                                                

revealing that the outflow speed v0 is almost equal to the Alfvén speed va —the speed
at which magnetic disturbances propagate in plasma.  

Further with the steady state approximation, the induction equation (2) is stating that
the magnetic  field is  dissipated (via the λ∇2B term) as rapidly as  it  is  convected
towards the current sheet at a speed vi  (via the  × ∇ v × B term). The diffusion term,
which is of order λB/l2 (where l also represent the length scale over which magnetic
field varies), has to be balanced by the other term corresponding to the supply of
fresh magnetic flux at velocity vi. Since this term    × ∇ v × B should be of order 
viB/l. Now, from equation (3), we get

                                                   
λ B

l2 ≈
vi B

l
                          -------- (7)

                                                      v i≈
λ
l

                              -------- (8)

                                            
From equation (4)

                                                  l≈
vi L

v 0

Now use equation (6), we can get 

                                                   l≈
vi L

v a

                             --------- (9)

Put this value of l into equation (8) and we get,

                                                   v i≈
λ va

vi L

                                                  v i
2
≈

λ va
2

va L

                                               v i
2
≈

v a
2

(va L/ λ)



                                                  v i≈
v a

√RM

                             ------- (10).

where magnetic Reynolds number RM = (vaL/λ) is calculated with Alfven speed (va).
Equation (10) is the reconnection rate in the Sweet-Parker reconnection rate. From
our  previous  lecture,  we  know  that  RM is  typically  a  very  large  number  in
astrophysical  situations.  Therefore  equation  (10)  implies  that  the  reconnection
proceeds at a rate which is a tiny fraction of the Alfven speed.

For  the  completeness  of  the  discussion,  we  would  like  to  mention  here  that
observations reveal the occurrence of sudden energy release in the form of solar and
stellar flares in astrophysical plasmas. For example, in a large solar flare, an energy
of  the  order  of  1032 ergs  is  released  within  a  few  minutes.  In  a  magnetically
dominated  solar  corona,  it  is  believed  that  magnetic  reconnection  is  the  process
responsible  for  such eruptions.  With  the  typical  solar  coronal  parameters:  Alfvén
speed v a ≈ 10 6 m/s, the characteristic length scale L ≈ 107 m (typical height of
magnetic loops) and magnetic diffusivity (calculated using Spitzer resistivity) 
λ ≈ 1m2 /s; the magnetic Reynolds number RM are 1013 and 10s. Following Sweet-
Parker model, the reconnection rate vi and the characteristic reconnection time τd are
approximately 0.3m/s and 3 × 106 s respectively. The τd is clearly much larger than
the observed flaring time—inferring the model to be inadequate to account for solar
flares.  In  an  attempt  to  increase  the  reconnection  rate,  Petschek  assumed a  two-
dimensional current sheet where L ≈ l. Further physical arguments (which are beyond
the scope of this course) lead to a reconnection rate given by

                                              v i≈
v a

ln RM

which is known as the Petschek reconnection rate.  Note that,  for  a given RM,  the
Petschek reconnection rate is much faster compared to the Sweet-Parker reconnection
rate. Furthermore, Priest and Forbes proposed an unified model where the Sweet-
Parker and Petschek rates appear as special cases. In addition to these steady state
models,  various  time-dependent  models  of  reconnections  are  proposed.  However,
magnetic reconnection in three-dimensional conditions is still not fully understood
phenomena and it is an open area of research.  

Reference: Book “Solar Magnetohydrodynamics” by Eric Priest.
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