

1

Ref: developed with the help of online study material for Python

Introduction to numpy, scipy and matplotlib
Modeling and Simulation: CC-05 unit II

Document in a Glance:

1.1: Install numpy, scipy and matplotlib

 1.1.1: NumPy

 1.1.2: SciPy

 1.1.3: Matplotlib

1.2: Importing the packages

1.3: NumPy and methods

 1.3.1: Array Indexing

 1.3.2: Array Attribute

 1.3.3: Basic Array Methods

 1.3.4: Array Shape Manipulation

 1.3.5: Mathematical Function

 1.3.6: Polynomials

1.4: SciPy Basics

 1.4.1: Integration

 1.4.2: Interpolation

1.5: Matplotlib basics

 1.5.1: Plotting

 1.5.2: Subplots

1.1 Install numpy, scipy and matplotlib

Before working with numpy, scipy and matplotlib, we need to install them as follows.

Open a cmd window and use the next set of commands to install NumPy, SciPy and

Matplotlib: Assuming that you have already installed Python.

 python -m pip install numpy

 python -m pip install scipy

 python -m pip install matplotlib

After running each of the above commands you should see the last line saying

Successfully installed. Then Launch Python from a cmd window and check the version of

Scipy, you should see something like this:

2

Ref: developed with the help of online study material for Python

 C:\>python
Python 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 22:39:24) [MSC v.1916 32 bit (Intel)]

on win32
 Type "help", "copyright", "credits" or "license" for more information.
 >>> import scipy as sp
>>> sp.version.version

'1.4.1'

1.1.1: NumPy

NumPy (Numeric Python) is probably the most fundamental package in Python

designed to support a powerful multi-dimensional array object as well as high-level

mathematical and numerical functions that can be utilized for efficient scientific

computing. It is also clear use for scientific computing; it can also be utilized as an

efficient multi-dimensional container of generic data.

 1.1.2: SciPy

SciPy (Scientific Python) is a set of open source scientific and numerical tools built on

the Numpy extension of Python. It adds significant power to the interactive Python

session by providing the user with high-level commands and classes for manipulating

and visualizing data. Scipy builds on Numpy, and for all basic array handling needs

you can use Numpy functions when using SciPy functions.

1.1.3: Matplotlib

Matplotlib is probably the single most used Python package for 2D-graphics. It

provides both a very quick way to visualize data from Python and publication-quality

figures in many formats.

1.2: Importing the packages

There are several ways to import NumPy and Matplotlib, but the community has

created the modules strongly recommends following these import conventions. They

have adopted, as shown below.

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

3

Ref: developed with the help of online study material for Python

It is also recommended to import SciPy sub-packages individually; similar to what is

shown below.

from scipy import linalg, optimizepy

These conventions are used throughout official NumPy and SciPy source code and

documentation, as well as other examples and documentations. Although it is not

required to follow these conventions, again, it is still strongly recommended. We will

also be using these conventions as for the remainder of this tutorial.

The SciPy and Matplotlib utilize NumPy arrays; therefore it is appropriate to discuss

them first. The array object class is the central feature of NumPy. Arrays are similar to

lists in Python, except that every element of an array must be of the same type,

typically a numeric type like float or int. Arrays make operations with large amounts

of numeric data very fast and are generally much more efficient than lists.

1.3: NumPy and methods

NumPy’s array class is called ndarray, also known by the alias array. There are many

methods of creating arrays. An array can be created directly from a list of values:

>>> np.array([[2, 3, 4], [1, 2, 3]])
 array([2, 3, 4], [1, 2, 3])
>>> cvalues = [22.2, 131.7, 6.4, 7.]

>>> np.array(cvalues)
array([22.2, 131.7, 6.4, 7.])
 >>> np.array([2, 3, 4], dtype=float)
array([2., 3., 4.])
You can also generate an array of values from a given half-open interval using

numpy.arange:

>>> np.arange(3)
 array([0, 1, 2])

>>> np.arange(3.0)
 array([0., 1., 2.])
>>> np.arange(3,7)
array([3, 4, 5, 6])

>>> np.arange(3,7,2)

4

Ref: developed with the help of online study material for Python

array([3, 5])

An array of evenly spaced values over a closed interval can be generated using

numpy.linspaces

 >>> np.linspace(2.0, 3.0, num=5)
 array([2. , 2.25, 2.5 , 2.75, 3.])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)

array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
 (array([2. , 2.25, 2.5 , 2.75, 3.]), 0.25)

Special arrays can also be generated using NumPy, like an array of zeroes, one, and

even one with a diagonal filled with one while the rest are zeroes.

 >>> np.zeros(2,2)
array([[0., 0.], [0., 0.]])

>>> np.ones(5)
array([1., 1., 1., 1., 1.])
>>> np.full((2, 2), 10)
array([[10, 10], [10, 10]])

>>> np.eye(3, dtype=int)
array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

1.3.1: Array Indexing

There are many options to indexing using NumPy, which gives numpy indexing great

power, but with power comes some complexity and the potential for confusion.

Single numpy arrays can be indexed similar to indexing Python arrays. For

multidimensional arrays, you also have the ability to get a single row or the element of

multiple rows that are of the same column. For example:

 >>> Z = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
>>> Z[1, :]
array([5, 6, 7, 8])

 >>> Z [:, 1:2]
array([[2], [6], [10]])

5

Ref: developed with the help of online study material for Python

You can also get multiple values from an array using Integer Array Indexing. Using

the previous array Z:

 >>> Z[[0, 1, 2], [0, 1, 0]] # (0,0), (1,1) and (2,0) element

 array([1, 6, 9])
To further showcase the indexing power of NumPy, here is another example using

the same array:

 >>> Z[Z > 2]

array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

1.3.2: Array Attribute

Array attributes reflect information that is intrinsic to the array itself. Generally,

accessing an array through its attributes allows you to get and sometimes set intrinsic

properties of the array without creating a new array. The exposed attributes are the

core parts of an array and only some of them can be reset meaningfully without

creating a new array:

ndarray.flags Information about the memory layout of the array
ndarray.shape Tuple of array dimensions

ndarray.ndim Number of array dimensions
ndarray.size Number of elements in the array
ndarray.itemsize Length of one array element in bytes
ndarray.nbytes Total bytes consumed by the elements of the array

ndarray.base Base object if memory is from some other object
ndarray.dtype Data-type of the array’s elements
ndarray.T Same as self.transpose(), except that self is returned if self.ndim < 2
ndarray.flat A 1-D iterator over the array

1.3.3: Basic Array Methods

NumPy has several methods for and handling and manipulating. Given a

multidimensional array a, you can generate a copy of that array as a Python list:

 >>> a = np.array([[1, 2], [3, 4]])
>>> a.tolist()
 [[1, 2], [3, 4]]
You can also get an element of after it is converted to a standard Python scalar:

6

Ref: developed with the help of online study material for Python

 >>> a
array([[1, 2], [3, 4]])

>>> a.item(3)
4
>>> a.item((1,0))
 3
You can also insert an element into the array using numpy.itemset:

 >>> a.itemset(3, 9)
>>> a

array([[1, 2], [3, 9]])
>>> a.itemset((1,0), 21)
>>> a
array([[1, 2], [21, 9]])
Replacing multiple elements is also possible using numpy.put:

 >>> a = np.arange(5)
 >>> a

array([0, 1, 2, 3, 4])
>>> np.put(a, [0,2],[-22, 57])
>>> a
 array([-22, 1, 57, 3, 4])

Or you can also replace every element in the array with a single element:

 >>> a.fill(22)
>>> a
array([22, 22, 22, 22, 22])

You can also join a sequence of arrays along an existing axis:

 >>> a = np.array([1,2], float)
>>> b = np.array([3,4,5,6], float)
>>> c = np.array([7,8,9], float)
>>> np.concatenate((a, b, c))

array([1., 2., 3., 4., 5., 6., 7., 8., 9.])

7

Ref: developed with the help of online study material for Python

1.3.4: Array Shape Manipulation

The shape of an array can also be manipulated and changed with various commands.

The first one would be numpy.reshape, which gives the array a new shape without

modifying its data:

 >>> a = np.arange(6)
 array([0, 1, 2, 3, 4, 5. 6])
>>> a.reshape((3, 2))
array([[0, 1], [2, 3], [4, 5]])

The previous method has a restriction since the new shape is limited to the total

number of elements in the array. Another method that does not have the same

restriction as the previous method is numpy.resize. If the new array resulting from the

specified shape is larger than the original array, then the new array is filled with

repeated copies of the original array:

 >>> a=np.array([[0,1],[2,3]])
 >>> np.resize(a,(2,3))

array([[0, 1, 2], [3, 0, 1]])
Another method lets you interchange the two axes of an array:

 >>> a = np.array([[1, 2], [3, 4]])

>>> a
array([[1, 2], [3, 4]])
>>> a.swapaxes(1,0)
 array([[1, 3], [2, 4]])

1.3.5: Mathematical Function

NumPy also provides a vast library for mathematical routines, ranging from basic

Algebraic and Arithmetic functions, to Trigonometric and Hyperbolic functions, and

even handling of complex numbers.

 >> a = np.sin(np.pi/3)
>>> a

 0.8660254037844386
>>> b = np.cos(np.sqrt(9))

8

Ref: developed with the help of online study material for Python

>>> b
 -0.98999249660044542

 >>> c = np.multiply(a, b)
>>> c
 -0.85735865161196523
 >>> np.reciprocal(c)

-1.166373020345508

1.3.6: Polynomials

NumPy supplies methods for working with polynomials. Given a set of roots, it is

possible to show the polynomial coefficients:

 >>> np.poly([-1, 1, 1, 10])
array([1, -11, 9, 11, -10])
In the example, the array output corresponds to coefficients of the equation x 4 - 11x3

+ 9x2 + 11x - 10. The opposite can also be done to get the roots. The roots function

can receive an array of coefficients as an input and returns an array of roots:

 >>> np.roots([1, 4, -2, 3])
array([-4.57974010+0.j , 0.28987005+0.75566815j, 0.28987005-0.75566815j])
NumPy also has the ability to return the derivative and antiderivative (indefinite

integral) of a polynomial. Given an array of coefficients of a polynomial, when can get

the derivative using numpy.polyder:

 >>> p = np.poly1d([1,1,1,1])
>>> p2 = np.polyder(p)
>>> p2
poly1d([3, 2, 1])
and the anti-derivative using numpy.polyint:

 >>> p = np.poly1d([3,2,1])

 >>> p2 = np.polyint(p)
>>> p2
poly1d([1., 1., 1., 0.])
Lastly, you can also evaluate a polynomial at specific values:

 >>> np.polyval([3,0,1], 5)
76

9

Ref: developed with the help of online study material for Python

In the previous example, the polynomial is 3x2 + 1 evaluated at x = 5, which looks

like 3(5)2 + 0(5) + 1, which evaluates to 76.

1.4: SciPy Basics

SciPy extends the functionality of the NumPy Routines. SciPy is organized into sub-

packages according to different scientific computing domains, but we are not going to

cover each and every one of them in detail, but rather discuss and provide examples

of some of its capabilities.

1.4.1: Integration

SciPy provides several integration techniques under scipy.integrate, including an

ordinary differential equation integrator.

 >>> import scipy.integrate as integrate

 >>> import scipy.special as special
 >>> result = integrate.quad(lambda x: special.jv(2.5,x), 0, 4.5)
 >>> result
(1.1178179380783253, 7.866317182537226e-09)

1.4.2: Interpolation

There are several general interpolation facilities available in SciPy, for data in one, two,

and higher dimensions. For example, when evaluating a one dimensional vector of

data, you can usescipy.interpolate.interp1d:

 >>> x = np.linspace(0, 10, num=11, endpoint=True)
>>>x array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
>>> y = np.cos(-x**2/9.0)

>>> y
array([1. , 0.99383351, 0.90284967, 0.54030231, -0.20550672, -0.93454613, -
0.65364362, 0.6683999 , 0.67640492, -0.91113026, 0.11527995])
>>> f1 = interp1d(x, y)

>>> f2 = interp1d(x, y, kind='cubic')

The result f1 and f2 are class instances, and each one can be treated like a function,

which interpolates between known data values to obtain unknown values. Given an

interval plugged in to the instance, the result can be seen by displaying it in a graph.

10

Ref: developed with the help of online study material for Python

SciPy doesn't have any functions that handle plotting. Instead, we will use Matplotlib,

which will be discussed in the next section.

1.5: Matplotlib basics

We have already covered NumPy and SciPy, and in terms of providing plotting

functions, neither provides any kind of support. There are several plotting packages

available for Python, the most commonly used one being Matplotlib. And pyplot is a

collection of command style functions that make Matplotlib work like MATLAB.

Each pyplot function makes some change to a figure: e.g., creates a figure, creates a

plotting area in a figure, plots some lines in a plotting area, decorates the plot with

labels, etc. Before working with matplotlib, it is highly recommended to install

IPython first. IPython is an enhanced interactive Python shell that has lots of interesting

features including named inputs and outputs, access to shell commands, improved

debugging and many more. It is central to the scientific-computing workflow in

Python for its use in combination with Matplotlib.

A basic example of plotting using Matplotlib is shown below, wherein

matplotlib.pyplot.ylable is utilize to create a label for the y-axis:

 >>> import matplotlib.pyplot as plt
 >>> plt.plot([1,2,3,4])
>>> plt.ylabel('some numbers')
>>> plt.show()

11

Ref: developed with the help of online study material for Python

1.5.1: Plotting

The most important function in matplotlib is plot, which allows you to plot 2D data.

Here is a simple example:

import numpy as np
import matplotlib.pyplot as plt
Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)

y = np.sin(x)
Plot the points using matplotlib
plt.plot(x, y)
plt.show() # You must call plt.show() to make graphics appear.
Running this code produces the following plot:

With just a little bit of extra work we can easily plot multiple lines at once, and add a

title, legend, and axis labels:

import numpy as np
import matplotlib.pyplot as plt

Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)

plt.xlabel('x axis label')

12

Ref: developed with the help of online study material for Python

plt.ylabel('y axis label')
plt.title('Sine and Cosine')

plt.legend(['Sine', 'Cosine'])
plt.show()

You can read much more about the plot function in the documentation related to

plot.

1.5.2: Subplots

You can plot different things in the same figure using the subplot function. Here is an

example:

import numpy as np
import matplotlib.pyplot as plt
Compute the x and y coordinates for points on sine and cosine curves

x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)

Set up a subplot grid that has height 2 and width 1,
and set the first such subplot as active.
plt.subplot(2, 1, 1)
Make the first plot

plt.plot(x, y_sin)
plt.title('Sine')
Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)

plt.plot(x, y_cos)

13

Ref: developed with the help of online study material for Python

plt.title('Cosine')

Show the figure.
plt.show()

You can read much more about the subplot function in the documentation related to

subplot.

