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Quarks 

Introduction 

 

Quarks are the smallest building blocks of matter as of today. They are the 

fundamental constituents of all the hadrons. They have fractional electronic 

charge. Quarks never exist in isolation in nature. They are always found in 

combination with other quarks or antiquark in matter. By studying particles, 

scientists have determined the properties of quarks. Protons and neutrons, the 

particles that make up the nuclei of the atoms consist of quarks. Without quarks 

there would be no atoms, and without atoms, matter would not exist. Quarks form 

triplets called baryons such as proton and neutron or doublets called mesons such 

as Kaons and pi mesons. 

 Quarks exist in six components:  

                        up (u), down(d), charm (c), strange (s), bottom (b), and top (t) 

which are  known as quark flavors. Each quark has an antimatter counterpart 

called antiquark (designated by a line over the latter symbol) of opposite charge, 

baryon number, strangeness etc. The six flavors of quarks together with the six 

leptons (the electron, muon, tau, and their neutrinos) can be called truly 

elementary in nature. 

 

 



 

Quarks Are Building Blocks Of Matter 

 

Characteristics and Behaviour 

 

The six flavors of quarks are divided into three different categories called 

generations. The up and down quarks belong to the first generation, the charm 

and strange belong to the second generation, and the top and bottom belong to the 

third generation. Unlike other elementary particles, quarks have electric charge 

which is a fraction of standard charge i.e. the charge (e) of one proton. The 

different flavors of quarks have different charges. The up (u), charm (c) and top 

(t) quarks have electric charge +2e/3 and the down (d), strange (s) and bottom (b) 

quarks have charge -e/3; -e is the charge of an electron. The masses of these 

quarks vary greatly, and of the six, only the up and down quarks, which are by 

far the lightest, appear to play a direct role in normal matter. There are four 

fundamental forces that act between the quarks. They are strong force, 

electromagnetic force, weak force and gravitational force. The quantum of strong 

force is gluon. Gluons bind quarks or quark and antiquark together to form 

hadrons. The electromagnetic force has photon as quantum that couples the 

quarks charge. The weak force causes the beta decay and allows a quark of one 

type to change into another. The gravitational force couple’s quark mass. 

 

 



 

 

                           Quarks Composition of Hadrons 

 

Quarks bind together into states that can be observed directly in the laboratory as 

hadrons, particles with the strong force. The best-known examples of hadrons are 

the nucleons, the proton and neutron, from which all atomic nuclei are formed. 

The idea of quarks arose to explain the regularities of hadrons states, their charges 

and spins could be readily explained (and even predicted) by simply combining 

the then known u, d and s quarks. The quark model consists of all these features. 

The confinement of quarks in hadrons is perhaps the most extraordinary feature 

of quarks A free quark, one that is separated from a nucleon, would be readily 

detectable because its charge would be -2/3 or 1/3 of the charge of an electron. 

No convincing evidence for such a particle has been found, and it is now believed 

that in quarks confinement is an unavoidable consequence. There are three quarks 

to make a proton or a neutron. The proton and neutron are different because the 

proton is a combination of two u quarks and one d quark and hence it has a total 

charge of 2(2e/3) + (-e/3) = +e. The neutron is made up of one u and two d quarks 

and hence it has total charge (2e/3) + 2(-e/3) = 0. Figure below shows quark 

composition of proton and neutron. 

                                             



In addition to nucleons, other combinations of three quarks have been observed, 

and all are known collectively as baryons. For example, from the u, d, and s 

quarks, it is possible to make ten distinct combinations, and all have been seen 

(notice that they all have charges that are integer multiples of e). In addition, 

baryons with c and b quarks have also been observed. All the baryons except for 

the proton and neutron decay quite rapidly because the weak interactions make 

all the quarks unstable. In addition to baryons, quarks can combine with their 

antiparticles, the antiquark, to form mesons. For example, the combinations us 

and us can form the K- and K+, the Kaons, of electric charge-e and +e, 

respectively as shown in the figure. All the mesons are bosons with integer spins. 

The table below shows quark composition of some hadrons. 

                                     

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

   Quarks Composition of Some Baryons and Mesons 

 



                           

                              Color of Quarks 

                        It is well known that particles are of two types: fermions, whose 

spins are odd multiples of ½, and bosons, which have zero or integral spin. 

Fermions obey the Pauli’s Exclusion Principle that states that two of them cannot 

occupy the same physical state simultaneously. The Ω- (sss) was found to have a 

spin of 3/2, and the simplest configuration of the ground state to give this result 

would require all three quarks to have spins up. This violates the exclusion 

principle as the quarks are supposed to be fermions. This problem was resolved 

by the introduction of the concept of color, as formulated in quantum 

chromodynamics (QCD). In this theory of strong interactions color has nothing 

to do with the colors of the everyday world but rather represents a property of 

quarks that is the source of the strong force. The colors red, green, and blue are 

ascribed to quarks, and their opposites, antired, antigreen, and antiblue, are 

ascribed to antiquarks. According to QCD, all combinations of quarks must 

contain mixtures of these imaginary colors that cancel out one another, with the 

resulting particle having no net color. A baryon, for example, always consists of 

a combination of one red, one green, and one blue quark 

and so never violates the exclusion principle. Thus, the three quarks in the Ω- 

have their spins parallel and the same spatial wave function, but these are of three 

different colors. Since all the three colors are equally present, it is said that the 

state is color-neutral, and since this additional quantum number is not seen in real 

hadrons, one knows that these states must all be colorless. The baryons 



accomplish colorlessness by being composed of three different-colored quarks; 

the mesons are color-neutral as they are composed of quarks and antiquarks. All 

hadrons have zero net r, b and g colors; they are all colorless. The property of 

color in the strong force plays a role analogous to that of electric charge in the 

electromagnetic force, and just as charge implies the exchange of photons 

between charged particles, so does color involve the exchange of massless 

particles called gluons among quarks. Just as photons carry electromagnetic 

force, gluons transmit the forces that bind quarks together. Quarks change their 

color as they emit and absorb gluons, and the exchange of gluons maintains 

proper quark color distribution. The binding forces carried by the gluons tend to 

be weak when quarks are close together. Within a proton (or other hadrons), at 

distances of less than 10−15 meter, quarks behave as though they were nearly 

free. 

When one begins to draw the quarks apart, however, as when attempting to knock 

them out of a proton, the effect of the force grows stronger. This is because gluons 

have the ability to create other gluons as they move between quarks. Thus, if a 

quark starts to speed away from its companions after being struck by an 

accelerated particle, the gluons utilize energy that they draw from the quark’s 

motion to produce more gluons. The larger the number of gluons 

exchanged among quarks, the stronger the effective binding forces become. 

Supplying additional energy to extract the quark only results in the conversion of 

that energy into new quarks and antiquarks with which the first quark combines. 

This phenomenon is observed at high-energy particle accelerators in the 

production of “jets” of new particles that can be associated with a single quark.  

 

 

 

                     THE EIGHTFOLD WAY (1961 -1 964) 

The Mendeleev of elementary particle physics was Murray Gell-Mann, who 

introduced the so-called Eightfold Way in 196 1 .21 (Essentially the same scheme 

was proposed independently by Ne’eman.) The Eightfold Way arranged the 

baryons and mesons into weird geometrical patterns, according to their charge 

and strangeness. The eight lightest baryons fit into a hexagonal array, with two 



particles at the center:

 

 

This group is known as the baryon octet. Notice that particles of like charge lie 

along the downward-sloping diagonal lines: Q =  +1 (in units of the proton 

charge) for the proton and the ∑ ;+  Q =  0 for the neutron, the lambda, the ∑ ,0  

and the Ξ0 ;  Q =  −1 for the ∑ and –   the  Ξ−. Horizontal lines associate particles 

of like strangeness: S =  0 for the proton and neutron, S =  −1 for the middle 

line and S =  −2 for the two  Ξ′s. The eight lightest mesons fill a similar 

hexagonal pattern, forming the (pseudo-scalar) meson octet:  

 

Once again, diagonal lines determine charge, and horizontals determine 

strangeness; but this time the top line has S = 1, the middle line S = 0, and the 

bottom line S = - I. (This discrepancy is a historical accident; Gell-Mann could 

just as well have assigned S = 1 to the proton and neutron, S = 0 to the ∑’s and 

the Λ, and S = -1 to the ∑’s. In 1953 he had no reason to prefer that choice, and it 

seemed most natural to give the familiar particles-proton, neutron, and pion- a 

strangeness of zero. After 196 1 a new term-hypercharge-was introduced, which 

was equal to S for the mesons and to S + 1 for the baryons. But later developments 

showed that strangeness was the better quantity after all, and the word 



“hypercharge” has now been taken over for a quite different purpose.) Hexagons 

were not the only figures allowed by the Eightfold Way; there was also, for 

example, a triangular array, incorporating 10 heavier baryons- 

The Baryon decuplet: 

 

 

 

 

 

 

 

 

THE QUARK MODEL (1964) 

But the very success of the Eightfold Way begs the question: Why do the hadrons 

fit into these curious patterns?  

In particle physics, the quark model is a classification scheme for hadrons in terms 

of their valence quarks—the quarks and antiquarks which give rise to the 

quantum numbers of the hadrons. The quark model underlies "flavor SU(3)",or 

the Eightfold Way, the successful classification scheme organizing the large 

number of lighter hadrons that were being discovered starting in the 1950s and 

continuing through the 1960s. It received experimental verification beginning in 

the late 1960s and is a valid effective classification of them to date. The model 

was independently proposed by physicists Murray Gell-Mann, who dubbed them 

"quarks" in a concise paper, and George Zweig, who suggested "aces" in a longer 

manuscript. André Peterman also touched upon the central ideas from 1963 to 

1965, without as much quantitative substantiation. Today, the model has 



essentially been absorbed as a component of the established quantum field theory 

of strong and electroweak particle interactions, dubbed the Standard Model. 

Hadrons are not really "elementary", and can be regarded as bound states of their 

"valence quarks" and antiquarks, which give rise to the quantum numbers of the 

hadrons. These quantum numbers are labels identifying the hadrons, and are of 

two kinds. One set comes from the Poincare symmetry—JPC, where J, P and C 

stand for the total angular momentum-symmetry, and C-symmetry, respectively. 

The remaining are flavor quantum numbers such as the isospin, strangeness, 

charm, and so on. The strong interactions binding the quarks together are 

insensitive to these quantum numbers, so variation of them leads to systematic 

mass and coupling relationships among the hadrons in the same flavor multiplate. 

All quarks are assigned a baryon number of 1⁄3. Up, charm and top quarks have 

an electric charge of +2⁄3, while the down, strange, and bottom quarks have an 

electric charge of −1⁄3. Antiquarks have the opposite quantum numbers. Quarks 

are spin-1⁄2 particles, and thus fermions. Each quark or antiquark obeys the Gell-

Mann−Nishijima formula individually, so any additive assembly of them will as 

well. Mesons are made of a valence quark−antiquark pair (thus have a baryon 

number of 0), while baryons are made of three quarks (thus have a baryon number 

of 1). This article discusses the quark model for the up, down, and strange flavors 

of quark (which form an approximate flavor SU (3) symmetry). There are 

generalizations to larger number of flavors. 

The Periodic Table had to wait many years for    quantum mechanics and the 

Pauli exclusion principle to provide its explanation. An understanding of the 

Eightfold Way, however, came already in 1964, when Gell-Mann and Zweig 

independently proposed that all hadrons are in fact composed of even more 

elementary constituents, which Gell-Mann called quarks. The quarks come in 

three types (or “flavors”), forming a triangular “Eightfold-Way” pattern: 

 

 



The u (for “up”) quark carries a charge of   
2

3 
  and a strangeness of zero; the 

d(“down”) quark carries a charge of - 
1

3
and S = 0; the s (originally “sideways”, 

but now more commonly “strange”) quark has Q = - 
1

3
 and S = - 1. To each quark 

(q) there corresponds an antiquark (q̅), with the opposite charge and strangeness: 

 

 

The quark model asserts that 

1. Every baryon is composed of three quarks (and every antibaryon is 

composed of three antiquarks). 

2. Every meson is composed of a quark and an antiquark. 

With these two rules it is a matter of elementary arithmetic to construct the baryon 

decuplet and the meson octet. All we need to do is list the combinations of three 

quarks (or quark-antiquark pairs), and add up their charge and strangeness: 

 

 



Notice that there are 10 combinations of three quarks. Three u's, for instance, at 

 Q =  
2

3
 each, yield a total charge of +2, and a strangeness of zero. This is the ∆++

 

particle. Continuing down the table, we find all the members of the decuple 

ending with the Ω−, which is evidently made of three s quarks. 

A similar enumeration of the quark-antiquark combinations yields the meson 

table: 

 

 

 

But wait! There are nine combinations here, and only eight particles in the meson 

octet. The quark model requires that there be a third meson (in addition to the to 

π0 and the ƞ) with Q = 0 and S = 0. As it turns out, just such a particle had already 

been found experimentally-the ƞ’. In the Eightfold Way the ƞ’ had been classified 

as a singlet, all by itself. According to the quark model it properly belongs with 

the other eight mesons to form a meson nonet. (Actually, since uu̅,dd̅, and ss̅ all 

have Q = 0 and S = 0, it is not possible to say, on the basis of anything we have 

done so far, which is theπ0  , which the ƞ, and which the ƞ’. But never mind, the 

point is that there are three mesons with Q = S = 0.) By the way, the antimensions 

automatically fall in the same supermultiple as the mesons: ud̅ is the antiparticle 

of du̅, and vice versa. 

 



 

The pseudo scalar meson nonet. Members of the original meson "octet" are shown 

in green, the singlet in magenta. Although these mesons are now grouped into a 

nonet, the Eightfold Way name derives from the patterns of eight for the mesons 

and baryons in the original classification scheme.  

 

 

 

 

Mesons 

 

 

Pseudo scalar Mesons of spin 0 form a nonet 

 

 



 

Mesons Of spin 1 form a nonet 

 The Eightfold Way classification is named after the following fact. If we take 

three flavors of quarks, then the quarks Figure 2: Pseudo scalar mesons of spin 0 

form a nonet . Mesons of spin 1 form a nonet lie in the fundamental 

representation, 3 (called the triplet) of flavor SU(3). The antiquarks lie in the 

complex conjugate representation 3. The nine states (nonet) made out of a pair 

can be decomposed into the trivial representation, 1 (called the singlet), and the 

adjoint representation, 8 (called the octet). The notation for this decomposition 

is, 

                                          

 shows the application of this decomposition to the mesons. If the flavor 

symmetry were exact (as in the limit that only the strong interactions operate, but 

the electroweak interactions are notionally switched off), then all nine mesons 

would have the same mass. However, the physical content of the full theory 

includes consideration of the symmetry breaking induced by the quark mass 

differences, and considerations of mixing between various multiples (such as the 

octet and the singlet). N.B. Nevertheless, the mass splitting between the η and the 

η′ is larger than the quark model can accommodate, and this "η–η′ puzzle" has its 

origin in topological peculiarities of the strong interaction vacuum, such as 

instanton configurations. Mesons are hadrons with zero baryon number. If the 

quark antiquark pair are in an orbital angular momentum L state, and have spin 

S, then 

*  |L − S| ≤ J ≤ L + S, where S = 0 or 1, 

*  P = (−1)L + 1, where the 1 in the exponent arises from the intrinsic parity                                                                         

of the quark–antiquark pair. 



 * C = (−1)L + S  for mesons which have no flavor. Flavored mesons have 

indefinite value of C. 

*For isospin I = 1 and 0 states, one can define a new multiplicative quantum 

number called the G-parity such that 

G = (−1)I + L + S. 

If P = (−1)J, then it follows that S = 1, thus 

PC= 1. States with these quantum numbers are called natural parity states; while 

all other quantum numbers are thus called exotic. 

Baryons 

 

 

 

The S = 
1

2
ground state baryon octet 

 

 

 

 

 

 



 

The S = 
3

2
 baryon decuplet 

 

Since quarks are fermions, the spin– statistics theorem implies that the 

wavefunction of a baryon must be antisymmetric under exchange of any 

two quarks. This antisymmetric wavefunction is obtained by making it fully 

antisymmetric in color, discussed below, and symmetric in flavor, spin and 

space put together. With three flavors, the decomposition in flavor is 

 

 

                       

The decuplet is symmetric in flavor, the singlet antisymmetric and the two octets 

have mixed symmetry. The space and spin parts of the states are thereby fixed 

once the orbital angular momentum is given. 

It is sometimes useful to think of the basis states of quarks as the six states 

of three flavors and two spins per flavor. This approximate symmetry is called 

spin-flavor SU(6). In terms of this, the decomposition is, 

                          

The 56 states with symmetric combination of spin and flavour decompose under 

flavor SU(3) into 



                                                

where the superscript denotes the spin, S, of the baryon. Since these states are 

symmetric in spin and flavor, they should also be symmetric in space—a 

condition 

that is easily satisfied by making the orbital angular momentum L = 0. These are 

the ground state baryons. The S = 1⁄2 octet baryons are the two 

nucleons(p+,n0) and Sigmas(Σ+, Σ0, Σ−), Xis (Ξ,0 Ξ−), and the Lambda (Λ0).  

The S = 3⁄2 decuplet baryons Deltas (Δ++, Δ+, Δ0,, Δ_), Sigmas(Σ+, Σ0, Σ−), Xis 

(Ξ,0 Ξ−), 

And the Omega(Ω−). 

For example, the constituent quark model wavefunction for the proton is  

 

Mixing of baryons, mass splitting within and between multiplets, and magnetic 

moments are some of the other quantities that the model predicts successfully. 

 

 

 

Flavour symmetry 

In the early days of nuclear physics, it was realized that the proton and 

neutron have very similar masses and that the nuclear force is 

approximately charge independent. In other words, the strong force 

potential is the same for two protons, two neutrons or a neutron and a 

proton 

                                            Vpp ≈ Vnp ≈ Vnn. 

Heisenberg suggested that if you could switch off the electric charge 

of the proton, there would be no way to distinguish between a proton 

and a neutron. To reflect this observed symmetry of the nuclear force, 

it was proposed that the neutron and proton could be considered as 

two states of a single entity, the nucleon, analogous to the spin-up and 

spin-down states of a spin-half particle, 



                                      P = (1
0
)  and  n = (0

1
). 

This led to the introduction of the idea of isospin, where the proton 

and neutron form an isospin doublet with total isospin I = 
1

2
   and third 

component of isospin  I3 =  ±
1

2
 .  The charge independence of the 

strong nuclear force is then expressed in terms of invariance under 

unitary transformations in this isospin space. One such transformation 

would correspond to replacing all protons with neutrons and vice 

versa. Physically, isospin has nothing to do with spin. Nevertheless, it 

will be shown in the following section that isospin satisfies the same 

SU(2) algebra as spin. 

 

Flavour symmetry of the strong interaction 

The idea of proton/neutron isospin symmetry can be extended to the 

quarks. Since the QCD interaction treats all quark flavours equally, 

the strong interaction possesses a flavour symmetry analogous to 

isospin symmetry of the nuclear force. For a system of quarks, the 

Hamiltonian can be broken down into three components 

                                  Ĥ = Ĥ0 + Hˆstrong +  Hˆem, 
Where Ĥ₀   is the kinetic and rest mass energy of the quarks, and 

Ĥstrong and      Ĥem are respectively the strong and electromagnetic 

interaction terms. If the (effective) masses of the up- and down-quarks 

are the same, and Ĥem  is small compared to Ĥstrong, then to a good 
approximation the Hamiltonian possesses an up–down (ud) flavour 
symmetry; nothing would change if all the up-quarks were replaced 
by down-quarks and vice versa. One simple consequence of an exact 
ud flavour symmetry is that the existence of a (uud) bound quark state 
implies that there will a corresponding state (ddu) with the same mass. 

The above idea can be developed mathematically by writing the up- and 

down- quarks as states in an abstract flavour space 

                                       u = (1
0
) and  d =  (0

1
) . 

If the up- and down-quarks were indistinguishable, the flavour 

independence of the QCD interaction could be expressed as an 

invariance under a general unitary transformation in this abstract space 

                                      (
u′

d′) = U
^

(
u
d

) = (
U11 U12

U21 U22
)(

u
d

). 

Since a general 2 × 2 matrix depends on four complex numbers, it can 
be described by eight real parameters. The condition Û Û †  = I, imposes 



four constraints; therefore a 2 × 2 unitary matrix can be expressed in 
terms of four real parameters or, equivalently, four linearly independent 
2 × 2 matrices representing the generators of the transformation 

                                           Û = exp(iαiĜᵢ). 

One of the generators can be identified as 

U = (
1 0
0 1

) eiΦ 

                        

                              This U(1) transformation corresponds to multiplication by a 
complex phase and is therefore not relevant to the discussion of transformations 
between different flavour states. The remaining three unitary matrices form a 
special unitary SU(2) group with the property1 det U = 1. The three matrices 
representing the Hermitian generators of the SU(2) group are linearly independent 
from the identity and are there- fore traceless. A suitable choice2 for three 
Hermitian traceless generators of the ud flavour symmetry are the Pauli spin-
matrices 

                  σ1 = (
0 1
1 0

) , σ2 = (
0 −i
i 0

)      and σ3 = (
1 0
0 −1

). 

The ud flavour symmetry corresponds to invariance under SU(2) 
transformations leading to three conserved observable quantities 
defined by the eigenvalues of Pauli spin-matrices. The algebra of the 
ud flavour symmetry is therefore identical to that of spin for a spin-half 
particle. In analogy with the quantum-mechanical treatment of spin-

half particles, isospin T̂  is defined in terms of the Pauli spin-matrices 

T̂ =
1

2
σ. 

 

Any finite transformation in the up–down quark flavour space can be 

written in terms of a unitary transformation 

                                   Û  = 

eiα·T̂ , 

Such that  

                                        (u′

d′) =  eiα·T
^

(
u
d

)                 

where α · T̂   =  α1T̂1  + α2T̂2  + α3T̂3. Hence, the general flavour transformation 

is a “rotation” in flavour space, not just the simple interchange of up and down 

quarks. A general unitary transformation in this isospin space would amount to 

relabelling the up-quark as a linear combination of the up-quark and the down- 

quark. If the flavour symmetry were exact, and the up- and down-quarks were 

genuinely indistinguishable, this would be perfectly acceptable. However, because 

the up- and down-quarks have different charges, it does not make sense to form 



states which are linear combinations of the two, as this would lead to violations 

of electric charge conservation. Consequently, the only physical meaningful 

isospin transformation is that which corresponds to relabelling the states, u ↔ d. 

                     SU(3) flavour symmetry 

The SU(2) flavour symmetry described above is almost exact because 

the difference in the masses of the up- and down-quarks is small and 

the Coulomb interaction represents a relatively small contribution to 

the overall Hamiltonian compared to the strong interaction. It is 

possible to extend the flavour symmetry to include the strange quark. 

The strong interaction part of the Hamiltonian  treats all quarks 

equally and therefore possesses an exact uds flavour symmetry. 

However, since the mass of the strange quark is different from the 

masses of the up- and down-quarks, the overall Hamiltonian is not 

flavour symmetric. Nevertheless, the difference between ms and mu/d, 

which is of the order 100 MeV, is relatively small compared to the 

typical binding energies of baryons, which are of order 1 GeV. It is 

therefore possible to proceed as if the overall Hamiltonian possessed a 

uds flavour symmetry. However, the results based on this assumption 

should be treated with care as, in reality, the symmetry is only 

approximate. 

The assumed uds flavour symmetry can be expressed by a unitary 

transformation in flavour space 

                                   

                                   ( 
u′

d′

s′
 ) = Û  ( 

u
d
s

  ) = ( 
U11 U12 U13

U21 U22 U23

U31 U32 U33

 ) ( 
u
d
s

 ) 

 

In  general, a 3 × 3 matrix can be written in terms of nine complex numbers, or 
equivalently 18 real parameters. There are nine constraints from requirement of  
unitarity, Û Û †  = I. Therefore Û can be expressed in terms of nine linearly 
independent 3 × 3 matrices.  As before, one of these matrices is the identity 
matrix multiplied by a complex phase and is not relevant to the discussion of  
transformations between different flavour states. The remaining eight matrices 
form an SU(3) group and can be expressed in terms of the eight independent 
Hermitian generators T̂ i  such that the general SU(3) flavour transformation can 
be expressed as 

                                                                  Û  = eiα·T̂ . 

The eight generators are written in terms of eight λ-matrices with 

                                                      T̂ =
1

2
λ, 

where the matrices act on the SU(3) representations of the u, d and s quarks 



             u = ( 
1
0
0

 ) , d = ( 
0
1
0

 )    and  s = ( 
0
0
1

 ). 

The SU(3) uds flavour symmetry contains the subgroup of SU(2) u ↔
d flavour symmetry. Hence, three of the λ-matrices correspond to the 

SU(2) ud isospin symmetry and have the Pauli spin-matrices in the top 

left 2 × 2 block of the 3 × 3  matrix with all other entries zero, 

                 λ1 = ( 
0 1 0
1 0 0
0 0 0

),   λ2 = ( 
0 −i 0
i 0 0
0 0 0

 )    and    

λ3 =   ( 
1 0 0
0 −1 0
0 0 0

 ). 

The third component of isospin is now written in terms of the 

operator 

                          T̂₃ =
1

2
 λ3, 

Such that  

                T̂3u = +
1

2
u,    T̂3d = −

1

2
d   and T̂3s = 0. 

 As before, isospin lowering and raising operators are defined as T± =
1

2
(λ1 ± iλ2).  The remaining λ-matrices can be identified by  realising  

that the SU(3) uds flavour symmetry also contains the subgroups of  
SU(2) u ↔ s and SU(2) d ↔ s flavour symmetries, both of which can 
also be expressed in terms of the Pauli spin-matrices. The corresponding 
3 × 3 λ-matrixes for the u ↔ s symmetry are 

    λ4 = ( 
0 0 1
0 0 0
1 0 0

 ),    λ5 = ( 
0 0 −i
0 0 0
i 0 0

)         and  λX =

( 
1 0 0
0 0 0
0 0 −1

 ), 

And for the d ↔ s symmetry they are  

λ6 = ( 
0 0 0
0 0 1
0 1 0

 ) ,

λ7 = ( 
0 0 0
0 0 −i
0 i 0

 )                and    λY = ( 
0 0 0
0 1 0
0 0 −1

 ) 

Of the nine λ-matrices identified above, only eight are independent; one 



of the three diagonal matrices, λ3, λX and λY , can be expressed in terms 
of the other two. Because the u ↔ d symmetry is nearly exact, it is 
natural to retain λ3 as one of the eight generators of the SU(3) flavour 
symmetry. The final generator is chosen as the linear combination of λX 
and λY that treats u and d quarks symmetrically 

λ8 =
1

√3
 ( 

0 0 0
0 1 0
0 0 −1

 ) +
1

√3
 ( 

1 0 0
0 1 0
0 0 −2

 ) =
1

√3
 ( 

1 0 0
0 1 0
0 0 −2

 ). 

The eight matrices used to represent the generators of the SU(3) 

symmetry, known as the Gell-Mann matrices, are therefore 

 
 

                          

 

 SU(3) flavour states 

 

For the case of SU(2) flavour symmetry there are three Hermitian 
generators, each of which corresponds to an observable quantity. 
However, since the generators do not commute, they correspond to a 
set of incompatible variables. Consequently SU(2) states were defined 
in terms of the eigenstates of the third component of isospin T̂3 and 
the total isospin T̂ 2  = T̂ 2 + T̂ 2 + T̂ 2. In SU(3) there is an analogue of 
total isospin, which for the fundamental representation of the quarks 
can be written 

 

 

 

Of the eight SU(3) generators, only T3 =
1

2
λ3 and T8 =

1

2
λ8 commute 

and therefore describe compatible observable quantities. Hence, in 
addition to the analogue of the total isospin, SU(3) states are described 
in terms of the eigenstates of the λ3 and λ8 matrices. The corresponding 
quantum numbers are the third component of isospin and the flavour 
hypercharge defined by the operators 

T̂3 =
1

2
λ3 andŶ =

1

√3
λ8. 

 



 
The quarks are the fundamental “3” representation of the SU(3) 

flavour symmetry. Using the definitions of the quark states it is easy to 

verify that the isospin and hypercharge assignments of the u, d and s 

quarks are 

T̂₃u = +
1

2
u and Ŷu = +

1

3
u, 

T̂₃d = −
1

2
d   and Ŷd = +

1

3
d, 

                                                     T̂₃s = 0  and Ŷs = −
2

3
s. 

The flavour content of a state is uniquely identified by I3  =  nu − nd and 
Y=

1

3
(nu + nd − 2ns) where nu, nd and ns are the respective numbers of 

up-, down- and strange quarks. The I3 and Y quantum numbers of the 
antiquarks have the opposite signs compared to the quarks and they form 
a 3 multiplet, Whilst the Gell-Mann λ3 and λ8 matrices label the SU(3) 
states, the six remaining λ-matrices can be used to define ladder 
operators, 

T
^

± = 1 2⁄ (λ1 ± iλ2) 

V
^

± = 1 2⁄ (λ4 ± iλ5) 

U
^

± = 1 2⁄ (λ6 ± iλ7) 

 

 

which respectively step along the matrix representations of these ladder 
operators it is straightforward to verify that 

V̂₊s = +u, V̂₋u = +s,   Û₊s = +d,
Û₋d = +s,   T̂₊d =  +u and T̂₋u = +d 

with all other combinations giving zero. In SU(3) flavour symmetry it 
is not possible to express the antiquarks as a triplet which transforms in 
the same way as the quark triplet. Nevertheless, following the 
arguments, the effect of a single ladder operator on an antiquark state 
must reproduce that from the corresponding SU(2) subgroup, such that 
the states can be obtained from 

V̂₊u̅ = −s̅, V̂₋s̅ = −u̅,      Û₊d̅ = −s̅,   Û₋s̅ = −d̅,   T̂₊u̅ = −d̅   and T̂₋d̅
= −u̅  

 



 

 
 

                    

 

 

 

Colour and QCD 

The underlying theory of quantum chromodynamics appears to be 

very similar to that of QED. The QED interaction is mediated by a 

massless photon corresponding to the single generator of the U(1) 

local gauge symmetry, whereas QCD is mediated by eight massless 

gluons corresponding to the eight generators of the SU(3) local gauge 

symmetry. The single charge of QED is replaced by three conserved 

“colour” charges, r, b and g (where colour is simply a label for the 

orthogonal states in the SU(3) colour space). Only particles that have 

non-zero colour charge couple to gluons. For this reason the leptons, 

which are colour neutral, do not feel the strong force. The quarks, 

which carry colour charge, exist in three orthogonal colour states. 

Unlike the approximate SU(3) flavour symmetry, the SU(3) colour 

symmetry is exact and QCD is invariant under unitary transformations 

in colour space. Consequently, the strength of QCD interaction is 

independent of the colour charge of the quark. In QED the 

antiparticles have the opposite electric charge to the particles. 

Similarly, in QCD the antiquarks carry the opposite colour charge to 

the quarks, r⃗, g⃗⃗ and b⃗⃗. 

 
The three colour states of QCD can be represented by colour wavefunctions, 
 
                                    

the colour states of quarks and antiquarks can be labelled by two 

additive quantum numbers, the third component of colour isospin I₃c 



and colour hypercharge  Yc as indicated in figure. 

 

 

                     The quark- gluon vertex 

 

The SU(3) local gauge symmetry of QCD implies a conserved colour 

charge and an interaction between quarks and gluons of the form . By 

comparing the QCD interaction term to that for QED   

                                          -iqγμAμΨ → −igs
1

2
λaγμGμ

aΨ, 

the QCD vertex factor can be identified as 

                                                        -iqγμ → −igsγμ 1

2
λa. 

Apart from the different coupling constant, the quark–gluon interaction 

only differs from the QED interaction in the appearance of the 3 × 3 

Gell-Mann matrices that only act on the colour part of the quark 

wavefunction. The quark wavefunctions therefore need to include this 

colour degree of freedom. This can be achieved by writing 

                                               u(p)→ ciu(p) 

where u(p) is a Dirac spinor and ci represents one of the possible colour 

states 

c1 = r = (
1
0
0

),    c2 = g = (
0
1
0

)     and   c3 = b = (
0
0
1

). 

Consequently, the quark current associated with the QCD vertex, shown 

in figure, can be written 

                                          jq
μ

= u̅(p3)cj
† {− (

1

2
) igsλaγμ} ciu(p1),                       

 

Where the cᵢ and cj are the colour wavefunctions of the quarks and the 

index a refers to gluon corresponding to the SU(3) generator Ta. (In 
other textbooks you may see the colour index appended to the spinor 



ciu(p) → ui(p).) 

 
 

In the quark current of (10.12), the 3 × 3 Gell-Mann matrix λa acts on 

the three component colour wavefunction, whereas the 4 ×4 γ-

matrices act on the four components of the Dirac spinor. Therefore the 

colour part of the current factorises, 

 
u̅(p3)cj

†{−(1 2)igsλaγμ⁄ }ciu(p1) = −(1 2⁄ )igs[cj
†λaci] × [u̅(p3)γμu(p1)]. 

 
 
Hence the qqg vertex can be written as 
                                                                       -(1 2⁄ )igsλji

a [u̅(p3)γμu(p1)], 
 
Where λji

a  is just a number, namely the jith element of λa. therefore, the Feymann 
rule associated with the QCD vertex is 
                                                                       -(1 2⁄ )igsλji

a γμ. 
 
For lowest-order diagrams, the Feymann rule for the gluon propagator of fig. is 
 

−i gμν q2⁄ δab, 
 
Where the delta-function ensures that the gluon of type a emitted at the vertex 
labelled μ is the same as that which is absorbed at vertex ν. 
 
Gluons 
The QCD interaction vertex includes a factor λji

a , where i and j label the colours 
of the quarks. Consequently, gluons corresponding to the non-diagonal Gell-
Mann matrices connect quark states of different colour. In order for colour to be 
con- served at the interaction vertex, the gluons must carry colour charge. For 
example, the gluon corresponding to λ4, which has non-zero entries in the 13 and 
31 positions, contributes to interactions involving the changes of colour   r →  b 
and b →   r. This is illustrated in figure , which shows the QCD process of qq →  
qq scattering where the colour flow corresponds to br →   rb, illustrated both in 
terms the colour flow in the Feynman diagram and as the two corresponding time-
ordered diagrams. Because colour is a conserved charge, the interaction involves 
the exchange of a br̅ gluon in the first time-ordering and a rb gluon in the second 
time-ordering. From this discussion, it is clear that gluons must carry 
simultaneously both colour charge and anticolour charge. 
Since gluons carry a combination of colour and anticolour, there are six gluons with 



different colour and anticolour, rg̅, gr̅ , rb̅, br̅, gb̅ and bg̅. Naively one might expect 
three gluons corresponding to rr̅, gg̅, and bb.  ̅̅ ̅̅ However, the physical gluons 
correspond to the fields associated with the generators λ1,..,8 of the SU(3) gauge 
symmetry. The gluons are therefore an octet of coloured states, analogous to the 
qq meson SU(3) flavour states. The colour assignments of the eight physical 
gluons can be written 
 
                  rg̅, gr̅, rb̅, br̅, gb̅, bg̅, 1 √2⁄ (rr̅ − gg̅)    and  1 √6⁄ (rr̅ + gg̅ − 2bb̅).  
 
Even though two of these gluon states have I3

c = Yc = 0, they are part of a colour 
octet and therefore still carry colour charge (unlike the colourless singlet state). 
 
 

                  Colour Confinement 

There is a wealth of experimental evidence for the existence of quarks. 

However, despite many experimental attempts to detect free quarks, 

which would be observed as fractionally charged particles, they have 

never been seen directly. The non- observation of free quarks is 

explained by the hypothesis of colour confinement, which states that 

coloured objects are always confined to colour singlet states and that 

no objects with non-zero colour charge can propagate as free particles. 

Colour confinement is believed to originate from the gluon–gluon 

self-interactions that arise because the gluons carry colour charge, 

allowing gluons to interact with other gluons through diagrams such 

as those shown in figure 

  
There is currently no analytic proof of the concept of colour 

confinement, although there has been recent progress using the 

techniques of lattice QCD. Nevertheless, a qualitative understanding 

of the likely origin can be obtained by considering what happens when 

two free quarks are pulled apart. The interaction between the quarks 



can be thought of in terms of the exchange of virtual gluons. Because 

they carry colour charge, there are attractive interactions between these 

exchanged virtual gluons, as indicated in figure a. The effect of these 

interactions is to squeeze the colour field between the quarks into a 

tube. Rather than the field lines spreading out as in QED (figure b), 

they are confined to a tube between the quarks, as indicated in figure 

c, At relatively large distances, the energy density in the tube between 

the quarks containing the gluon field is constant. Therefore the energy 

stored in the field is proportional the separation of the quarks, giving 

a term in the potential of the form 

                                                      V(r)~κτ                                         

Where experimentally κ~
1GeV

fm
. This experimentally determined value 

for κ  corresponds to a very large force of O(10⁵)N between any two 

unconfined quarks, regardless of  separation! Because the energy stored 

in the colour field increases linearly with distance, it would require an 

infinite amount of energy to separate two quarks to infinity. Put another 

way, if there are two free colour charges in the Universe, separated by 

macroscopic distances, the energy stored in the resulting gluon field 

between them would be vast. As a result, coloured objects arrange 

themselves into bound hadronic states that are colourless combinations 

with no colour field between them. Consequently quarks are always 

confined to colourless hadrons. 

Another consequence of the colour confinement hypothesis is that 

gluons, being coloured, are also confined to colourless objects. 

Therefore, unlike photons (the force carriers of QED), gluons do not 

propagate over macroscopic distances. It is interesting to note that had 

nature chosen a U(3) local gauge symmetry, rather than SU(3), there 

would be a ninth gluon corresponding to the additional U(1) generator. 

This gluon would be the colour singlet state, 

G9 = 1 √3⁄ (rr̅ + gg̅ + bb̅ ). 

Because this gluon state is colourless, it would be unconfined and would 

behave like a strongly interacting photon, resulting in an infinite range 

strong force; the Universe would be a very different (and not very 

hospitable) place with long-range strong interactions between all 

quarks. 

 

Colour confinement and hadronic states 

 



Colour confinement implies that quarks are always observed to be 
confined to bound colourless states. To understand exactly what is 
meant by “colourless”, it is worth recalling the states formed from the 
combination of spin for two spin-half particles. The four possible spin 
combinations give rise to a triplet of spin-1 states and a spin-0 singlet (2 
⊗ 2 = 3 ⊕ 1): 

|1,+1> = ⇈, |1,0 > =  1 √2⁄  (↑↓ +↓↑), |1, −1 > = ⇊   and |0,0 > =
 1 √2⁄  (↑↓ −↓↑). 

The singlet state is “spinless” in the sense that it carries no angular 
momentum. In a similar way, SU(3) colour singlet states are colourless 
combinations which have zero colour quantum numbers, Ι3

c = Yc =
0. It should be remembered that Ι3

c = Yc = 0 is a necessary but not 
sufficient condition for a state to be colourless. The action of any of the 
SU(3) colour ladder operators on a colour singlet state must yield zero, 
in which case the state is analogous to the spinless |0, 0 >singlet state. 
The colour confinement hypothesis implies that only colour singlet 

states can exist as free particles. Consequently, all bound states of quarks 

and antiquarks must occur in colour singlets. This places a strong 

restriction on the structure of possible hadronic states; the allowed 

combinations of quarks and antiquarks are those where a colour singlet 

state can be formed. The algebra of the exact SU(3) colour symmetry 

was described in the context of SU(3) flavour symmetry and the results 

can be directly applied to colour with the replacements, u →r, d → g 

and s → b. 

 

 



3 

First consider the possible colour wavefunctions for a bound qq state. 

The com- bination of a colour with an anticolour is mathematically 

identical to the construction of meson flavour wavefunctions in SU(3) 

flavour symmetry. The resulting colour multiplets, are a coloured 

octet and a colourless singlet. The colour confinement hypothesis 

implies that all hadrons must be colour singlets, and hence the colour 

wavefunction for mesons is 

Ψc(qq̅) = (1 √3⁄ )(rr̅ + gg̅ + bb̅). 

The addition of another quark (or antiquark) to either the octet or 

singlet state in fig. will not yield a state with Ι3
c = Yc = 0. Therefore, 

it can be concluded that bound states of  q qq̅ or qq̅q̅ do not exist in 

nature. 

These arguments can be extended to the combinations of two and 

three quarks. the combination of two colour triplets yields a colour 

sextet and a colour triplet (3̅). the absence of a colour singlet state  for 

the qq system, implies that bound states of two quarks are always 

coloured objects and therefore do not exist in nature. However, the 

combination of three colours yields a single singlet state with the 

colour wavefunction 

Ψc(qqq) = (1 √6⁄ )(rgb − rbg + gbr − grb + brg − bgr),        …..     

(14) 

analogous to the SU(3) flavour singlet wavefunction . This state clearly 

satisfies the requirement that Ic  = Yc  = 0. The colour ladder 

operators can be used to confirm it is a colour singlet. For example, the 

action of the colour isospin raising operator  T+
c for which T+

c g = r, gives 
T+

cΨc(qqq) = (1 √6⁄ )(rrb − rbr + rbr − rrb + brr − brr) = 0, 

as required. Hence a SU(3) colour singlet state can be formed from the 

combination of three quarks and colourless bound states of qqq are 

observed in nature. Since the colour singlet wavefunction of  (14)  is 

totally antisymmetric, and it is the only colour singlet state for three 

quarks, the colour wavefunction for baryons is always antisymmetric. 

This justifies the assumption to construct the baryon wavefunctions. 

Colour confinement places strong restrictions on the possible 

combinations of quarks and antiquarks that can form bound hadronic 

states. To date, all confirmed observed hadronic states correspond to 

colour singlets either in the form of mesons (qq̅), baryons (qqq) or 

antibaryons (q̅q̅q̅). In principle, combinations of (qq̅) and  (qqq) such 



as pentaquark states (qqq qq̅) could exist, either as bound states in their 

own right or as hadronic molecules such as (qq)-(qqq). In recent years 

there have been a number of claims for the existence of pentaquark 

states, but the evidence is (at best) far from convincing. 

 

 

  

                                     QUANTUM ELECTRODYNAMICS (QED) 

          

Quantum electrodynamics is the oldest, the simplest, and the most successful of 

the dynamical theories; the others are self-consciously modelled on it.  All 

electromagnetic phenomena are ultimately reducible to the following elementary 

process: 

This diagram reads: Charged particle e enters, emits (or absorbs) a photon, y, and 

exits. Assume the charged particle is an electron, it could just as well be a quark, 

or any lepton except a neutrino (the latter is neutral, of course, and does not 

experience an electromagnetic force). To describe more complicated processes, 

we simply patch together two or more replicas of this primitive vertex. Consider, 

for example, the following:                

                         

Here, two electrons enter, a photon passes between them, and the two then exit. 

This diagram, then, describes the interaction between two electrons. In the 

classical theory we would call it the Coulomb repulsion of like charges (if the two 

are at rest). In QED this process is called Maller scattering. We say that the 

interaction is “mediated by the exchange of a photon,” for reasons that should 

now be apparent. Twisting these “Feynman diagrams” around into any 

topological configuration, for example, we could stand the previous picture on its 

side:  



                                                            

The rule of the game is that a particle line running “backward in time” (as 

indicated by the arrow) is to be interpreted as the corresponding antiparticle going 

forward. So, in this process an electron and a positron annihilate to form a photon, 

which in turn produces a new electron-positron pair. An electron and a positron 

went in, an electron and a positron came out. This represents the interaction of 

two opposite charges: their Coulomb attraction. In QED this process is called 

Bhabha scattering. There is a quite different diagram which also contributes: 

                 

Both diagrams must be included in the analysis of Bhabha scattering.   

                             Using just two vertices we can also construct the following 

diagrams, describing, respectively, pair annihilation, e- + e+ - y + y; pair 

production, y + y - e- + e+; and Compton scattering, e- + y - e- + y: 

                                                

 

If we allow more vertices, the possibilities rapidly proliferate; for example, with 

four vertices 

we obtain, among others, the following diagrams: 



 

                                                   

                                                      

In each of these figures two electrons went in and two electrons came out. They 

too describe the repulsion of like charges (Maller scattering). The “innards” of 

the diagram are irrelevant as far as the observed process is concerned. Internal 

lines (those which begin and end within the diagram) represent particles that are 

not observed-indeed, that cannot be observed without entirely changing the 

process. We call them “virtual” particles. Only the external lines (those which 

enter or leave the diagram) represent “real” (observable) particles. The external 

lines, then, tell you what physical process is oncoming; the internal lines describe 

the mechanism involved.  

The Feynman rules enforce conservation of energy and momentum at each 

vertex, and hence for the diagram as a whole. It follows that the primitive QED 

vertex by itself does not represent a possible physical process.  

We can draw the diagram, but calculation would assign to it the number zero. The 

reason is purely kinematical: e- - e- + y would violate conservation of energy. 

Nor, for instance, is e- + e+ - y kinematically possible, although it is easy enough 

to draw the diagram: 

                                                                



In the center-of-mass system the electron and positron enter symmetrically with 

equal and opposite velocities, so the total momentum before the collision is 

obviously zero. But their momentum cannot be zero, since photons always travel 

at the speed of light; an electron-positron pair can annihilate to make two 

photons, but not one. Within a larger diagram, however, these figures are 

perfectly acceptable, because, although energy and momentum must be 

conserved at each vertex, a virtual particle does not carry the same mass as the 

corresponding free particle. In fact, a virtual particle can have any mass-whatever 

the conservation laws require. In the business, we say that virtual particles do not 

lie on their mass shell. External lines, by contrast, represent real particles, and 

these do carry the “correct” mass.  

 

 

                                 QUANTUM CHROMODYNAMICS (QCD) 

In chromodynamics color plays the role of charge, and the fundamental process 

(analogous to e- - e- + y) is quark + quark-plus-gluon (since leptons do not carry 

color, they do not participate in the strong interactions): 

                                                

As before, we combine two or more such “primitive vertices” to represent more 

complicated processes. For example, the force between two quarks (which is 

responsible in the first instance for binding quarks together to make baryons, and 

indirectly for holding the neutrons and protons together to form a nucleus) 

is described in lowest order by the diagram: 

                                               

Say that the force between two quarks is “mediated” by the exchange of gluons. 

At this level chromodynamics is very similar to electrodynamics. However, there 

are also important differences, most conspicuously, the fact that whereas there is 



only one kind of electric charge (it can be positive or negative, to be sure, but a 

single number suffices to characterize the charge of a particle), there are three 

kinds of color (red, green, and blue). In the process q - q + g, the color of the 

quark (but not its flavor) may change. For example, a blue up-quark may convert 

into a red up-quark. Since color (like charge) is always conserved, this means that 

the gluon must carry away the difference-in this instance, one unit of blueness 

and minus one unit of redness: 

                                                                

Gluons, then, are “bicolored,” carrying one positive unit of color and one negative 

unit. There are evidently 3 X 3 = 9 possibilities here, and you might expect there 

to be 9 kinds of gluons. For technical reasons, which we’ll come to in Chapter 9, 

there are actually only 8. 

 Since the gluons themselves carry color (unlike the photon, which is electrically 

neutral), they couple directly to other gluons, and hence in addition to the 

fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices, in 

fact, two kinds: three gluon vertices and four gluon vertices:           

                                  

This direct gluon-gluon coupling makes chromodynamics a lot more complicated 

than electrodynamics, but also far richer, allowing, for instance, the possibility of 

glueballs (bound states of interacting gluons, with no quarks on the scene at all).  

Another difference between chromodynamics and electrodynamics is the size of 

the coupling constant. Remember that each vertex in QED introduces a factor of 

a = 
1

137
, and the smallness of this number means that we need only consider 

Feynman diagrams with a small number of vertices. Experimentally, the 

corresponding coupling constant for the strong forces, 𝛂𝐬, as determined, say, 

from the force between two protons, is greater than 1, and the bigness of this 

number plagued particle physics for decades. For instead of contributing less and 

less, the more complex diagrams contribute more and more, and Feynman’s 



procedure, which worked so well in QED, is apparently worthless. One of the 

great triumphs of quantum chromodynamics (QCD) was the discovery that in this 

theory the number that plays the role of coupling “constant” is in fact not constant 

at all, but depends on the separation distance between the interacting particles (we 

call it a “running” coupling constant). Although at the relatively large distances 

characteristic of nuclear physics it is big at very short distances (less than the size 

of a proton) it becomes quite small. This phenomenon is known as asymptotic 

freedom; it means that within a proton or a pion, say, the quarks rattle around 

without interacting much. Just such behaviour was found experimentally in the 

deep inelastic scattering experiments. From a theoretical point of view, the 

discovery of asymptotic freedom rescued the Feynman calculus as a legitimate 

tool for QCD, in the high-energy regime. 

                                            

 Even in electrodynamics, the effective coupling depends somewhat on how far 

you are from the source. This can be understood qualitatively as follows. Picture 

first a positive point charge q embedded in a dielectric medium (i.e., a substance 

whose molecules become polarized in the presence of an electric field). The 

negative end of each molecular dipole will be attracted toward q, and the positive 

end repelled away, as shown in Figure below. As a result, the particle acquires a 

“halo” of negative charge, which partially cancels its field.  



                                                          

In the presence of the dielectric, then, the effective charge of any particle is 

somewhat reduced: 

                                                                  𝐪𝐞𝐟𝐟 =
q

ε
                                                (1) 

(The factor ε by which the field is reduced is called the dielectric constant of the 

material; it is a measure of the ease with which the substance can be polarized.) 

Of course, if you are in closer than the nearest molecule, then there is no such 

screening, and you “see” the full charge q. Thus, if you were to make a graph of 

the effective charge, as a function of distance. The effective charge increases at 

very small distances. Now, it so happens that in quantum electrodynamics the 

vacuum itself behaves like a dielectric; it sprouts positron-electron pairs, as 

shown in Feynman diagrams such as these: 

                                                                         

 

The virtual electron in each “bubble” is attracted toward q, and the virtual 

positron is repelled away; the resulting vacuum polarization partially screens the 

charge and reduces its field. Once again, however, if you get too close to q, the 

screening disappears. What plays the role of the “intermolecular spacing” in this 

case is the Compton wavelength of the electron, 𝛌𝐜= h/mc = 2.43 X 10−10cm. 

For distances smaller than this the effective charge increases, just as it did in 



Figure 2.2. Notice that the unscreened (“close-up”) charge, which you might 

regard as the “true” charge of the particle, is not what we measure in any ordinary 

experiment, since we are seldom working at such minute separation distances. 

What we have always called “the charge of the electron” is actually the fully 

screened effective charge. So much for electrodynamics. The same thing happens 

in QCD, but with an important added ingredient. Not only do we have the quark-

quark-gluon vertex (which, by itself, would again lead to an increasing coupling 

strength at short distances), but now there are also the direct gluon-gluon vertices. 

So, in addition to the diagrams analogous to vacuum polarization in QED, we 

must now also include gluon loops, such as these: 

It is not clear a priori what influence these diagrams will have on the as it turns 

out, their effect is the opposite: There occurs a lung of competition between the 

quark polarization diagrams (which drive a, up at short distances) and gluon 

polarization (which drives it down). Since the former depends on the number of 

quarks in the theory (hence on the number flavors, f), whereas the latter depends 

on the number of gluons (hence on the number of colors, n), the winner in the 

competition depends on the relative number of flavors and colors. The critical 

parameter turns out to be, 

                                                    a=2f- lln                  (2)  

If this number is positive, then, as in QED, the effective coupling increases at 

short distances; if it is negative, the coupling decreases. In the Standard Model, f 

= 6 and n = 3, so a = -2 1, and the QCD coupling decreases at short distances. 

Qualitatively, this is the origin of asymptotic freedom. The final distinction 

between QED and QCD is that whereas many particles carry electric charge, no 

naturally occurring particles carry color. Experimentally, 

it seems that quarks are confined in colorless packages of two (mesons) and three 

(baryons). As a consequence, the processes we actually observe in the laboratory 

are necessarily indirect and complicated manifestations of chromodynamics. It is 

as though our only access to electrodynamics came from the van der Waals forces 

between neutral molecules. For example, the (strong) force between two protons 

involves (among many others) the following diagram: 
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