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Magnetohydrodynamics

Magnetohydrodynamics Equations

From Unit-I, we know that plasma can formally be defined as a collection of charged
and  neutral  particles  which  obeys  the  condition  of  quasi-neutrality  and  exhibits
collective behavior in presence of self-consistent electromagnetic field. Note that due
to the self-consistent nature of the involved electromagnetic force, in general, a direct
understanding of dynamics of these charged particles is difficult. Then, a reasonable
simplification  is  achieved  by  using  a  fluid  (continuum)  approximation  where  an
individual particle looses its identity. Under this approximation, it is assumed that
plasma  is  made  of  infinitesimal  fluid  elements  (sometimes  also  known  as  fluid
parcels) that have dimension which is much smaller than the size of whole plasma
system (in laboratory plasma, you can think of the size of the container in which
plasma is filled),  however the dimension is much greater than the inter-molecular
distances so that the a fluid element have a large number of particles.  

Under this approximation, for sufficiently large time and length scales the plasma can
be treated as a magnetized fluid or magnetofluid. The dynamics of the fluid is then
described  by  magnetohydrodynamics   (MHD)  equations,  which  are  generically
similar to the Navier-Stokes equations complemented by the Maxwell’s equations in
their non-relativistic limit. The MHD equations (in SI units) are

   ----- (1)

    ---- (2)
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in standard notations (see any standard plasma books), where electrical resistivity η
and dynamic viscosity μ are assumed to be constant. To describe, v represents plasma
velocity.  ρ is  mass  density,  denoting plasma mass  per  unit  volume.  B and  E are
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magnetic and electric fields. p represents plasma pressure (similar to the one used in
thermodynamics). Equation (1) is known as the momentum transport equation which
is basically Newton’s second law for the fluid parcels of plasma and describes their
motion. Equation (2) is mass continuity equation which represents the law of mass
conservation. Equation (3) is basically Ohm’s law for moving conductor (as plasma
can be  treated  as  a  conductor  in  motion).   Equations  (4)  and (5)  are  3 rd and 4th

Maxwell’s equations and represent Faraday’s law and Ampere’s law.  Note that the
displacement current is neglected in Ampere’s law (equation (5)). This is due to the
assumption that plasma velocity are non-relativistic (i.e. v << c). Important to note
here is that the fluid description of plasma is achieved by taking moments of the
Vlasov equation. In this process the nth moment, for any arbitrary n, always contains
a  term  involving  (n+1)th moment.  This  forbids  the  corresponding  continuum
equations  to  get  closed  and  necessitates  the  requirement  of  an  ad  hoc  closure.
Typically  an equation of  state,  usually  utilized in thermodynamics,  is  assumed to
formally close the MHD equations.  The equation (7)  is  one such closure relating
thermodynamic pressure and mass density.

Importantly,  the  MHD  equations  are  always  non-linear.  To  appreciate  the  non-
linearity, we substitute electric field  E from the Ohm’s law (3) to equation (4) and
get,

                               ∂ B
∂ t

=−∇×η J+∇×v×B

now plug the current density J from equation (5) into above equation,

                              ∂ B
∂ t

=−
η
μ0

∇×(∇×B)+∇×v×B

                                     
∂ B
∂ t

=∇×v×B+λ ∇ 2 B                               --------- (8)

where λ= η/μ0 is known as magnetic diffusivity. Equation (8) basically represents the
combined form of equations (3), (4) and (5). This equation is known as “induction
equation”.  Therefore,  equations  (1),  (2),  (7)  and  (8)  form complete  set  of  MHD
equations. 

Important to note is that due to the presence of first term in left-hand-side (LHS) of
induction equation, velocity (v) and magnetic field (B) become coupled and non-
linear through the momentum trasport equation (1).   That’s why the first  term of
induction equation is sometimes known as “non-linear” term while the second term is
known as “diffusion” term.  

To  further  scrutinize  the  importance  of  the  induction  equation  in  magnetofluid
evolution, we first look at this equation carefully before discussing other aspects of



the MHD model. If B is the typical magnetic field, v the typical velocity and L the
typical length scale of a plasma system, then the non-linear term (  ×  ∇ v ×  B) of
induction equation is of order vB/L and the diffusion term (λ∇2B) is of order λB/L2.
The ratio of non-linearity to diffusion yields magnetic Reynolds number 

                                     RM = |  × ∇ v × B| / |λ∇2B|

                                      RM = (vB/L) /  (λB/L2)

                                               RM = vL/ λ                                         ---------- (9)

The value of RM determines the effectiveness of the non-linearity over the diffusion in
an evolving magnetofluid. For instance, if RM >> 1, the non-linearity dominates over
the  diffusion.  Whereas  for  RM <<  1,  the  magnetofluid  becomes  predominantly
diffusive. Since RM is directly proportional to the size L of the system, it turns out to
be much larger for astrophysical plasmas compared to laboratory plasmas. 

Typically, for a hydrogen plasma of temperature 104 K,  magnetic diffusivity  λ is
approximately equal to 107  m2/s. Taking this value of λ, we now estimate RM for a
laboratory system and for an astrophysical system. If we take L = 102 cm and v= 10
cm/s for a typical laboratory system, then we find from (9) that RM = 10-4 . Now let us
consider  granules  or  convection  cells  on  the  solar  surface,  which  are  very  small
objects by astrophysical standards. Using the typical values L=108  cm and v= 105

cm /s, we find RM =106 . We therefore conclude that the magnetic Reynolds number is
generally small (<< 1) for laboratory systems and very large ( >> 1) for astrophysical
systems.

Ideal Magnetohydrodynamics

In the limit of RM >> 1 (which is the case for most of the astrophysical and space
plasma systems), the magnitude of diffusion term is much smaller than the non-linear
term.  Therefore,  in  this  limit  of  high  Reynolds  number,   the  induction  equation
reduces as: 

                                         
∂ B
∂ t

=∇×v×B                                ---------- (10)

With the difusion term being neglected in the induction equation, the MHD equations
are often known as  ideal MHD  equations. It is worthy to mention here that ideal
MHD imposes certain constraints on the evolution of plasma. To understanding the
constraints, first, we discuss the concept of magnetic field lines (MFLs) which very
important in plasma. 



Relevantly,  the  magnetic  field  B can  be  represented  by  magnetic  field  lines.  A
magnetic  field  line  is  a  space-curve  which  is  everywhere  tangential  to  a  given
magnetic  field  B =  Bx  e^

x +  By  e^
y +  Bz  e^

z   and  is  described  by  the  ordinary
differential equations (ODEs):

                                     

in Cartesian coordinates (x, y, z), where ds is the invariant length and | B | is the
magnitude of B. Field lines are obtained by integrating these differential equations.
The topology of the magnetic field B is determined by the linkage and knottdness of
magnetic field lines which do not change under continuous deformations.

Now,  under  ideal  MHD,  and  the  plasma  satisfies  the  Alfvén’s  theorem  of  flux-
freezing or frozen-in-condition, which ascertains the field lines to be tied with fluid
parcels as the whole system evolves in time. As a consequence, the magnetic flux
across an arbitrary fluid surface, physically identified by the material elements lying
on it, remains conserved in time. Importantly, the otherwise abstract magnetic field
lines attain physicality as the flux-freezing allows them to be identified with fluid
parcels, which are real.

A proof of the flux-freezing is as follows. Let us consider an arbitrary fluid surface S
enclosed by a  curve C,  moving with fluid velocity  v.  The magnetic  flux passing
through the surface S is given by,

The rate of change of Φ is

 

where dl is the line element of C and v × dl is the area swept out by dl per unit time.
Hence, the total rate of change of Φ  includes two terms; the first term is due to the
change in  B  over the surface S and the second term is due to the variation in area
spanned by the S as the boundary C moves in space. Employing Stokes’ theorem in
the above equation we get,



Now, using equation (10) in the above equation, it is straightforward to show that 

                                         

stating  that  the  φ  is  conserved  across  the  fluid  surface  S.  As  a  consequence,
depending on the topology of magnetic field, few fluid surfaces can be identified
such that the magnetic field lines are entirely contained on the fluid surfaces which,
in literature are termed as magnetic flux surfaces (MFSs). It is then imperative that
the magnetic flux passing through the fluid surfaces is zero. Under the condition of
flux-freezing,  the  fluid  surfaces  retain  this  zero  flux  during  the  evolution  which
ensures that the field lines always remain tangential to the fluid surfaces. This infers
that the magnetic field lines are tied to the fluid parcels physically identifying the
fluid  surfaces  and hence  magnetic  flux  surfaces  can be  associated  with  the  fluid
surfaces.  This  association  is  maintained  throughout  the  evolution  under  the  flux-
freezing.

Another important impact of flux-freezing on the dynamics is that if two fluid parcels
are connected by a field line at time t = 0, they will always remain connected by the
same field line. The preservation of such connectivities warrants the invariance of
topological properties of the field lines; e.g., if two field lines are linked n times at t =
0, then they must maintain the same number of linkages at all times. 
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                                                        Figure- 1



The figure 1 (above) shows a pictorial demonstration of the flux-freezing or frozen-in
condition. From the figure, the field lines which are initially straight get bend due to
the motion of plasma.  

Further illustration of the flux-freezing condition is shown in figure 2. Let A and B be
two fluid elements which lie on the same magnetic field line as shown in figure 2. We
consider  a  thin  cylindrical  surface  around  this  field  line.  It  is  evident  that  the
magnetic  flux  across  this  cylindrical  surface  is  zero.  After  some  time,  the  fluid
elements A and B take up positions C and D , whereas the fluid elements which made
the previous cylindrical surface now make up a different cylindrical surface as shown
in second panel of figure 2. According to the flux-freezing, the magnetic flux through
this new cylindrical surface should be zero, and this is possible only if the field line
still passes along the axis of the cylindrical surface. This means that C and D still lie
on the same magnetic field line. In other words, if two fluid elements are connected
by a field line, they will always remain connected by a field line in the limit of ideal
MHD. 

                                                         Figure 2

Reference: Book “Solar Magnetohydrodynamics” by Eric Priest.
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