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Oscillating Electric Dipole

To understand the meaning of oscillating electric dipole, first we take two opposite
charges located at a distance  d  along z-direction at points A and B.  Basically, this
pairs of charges form an electric dipole with associated dipole moment (p) being
directed along z-direction (as shown in figure 1).
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Now, if we somehow change the charges at point A and B with time. Moreover, if the
change is such that charges at point A and B become the oscillatory function of time
i.e., for example: 

                                q(t)= q0 sin (ωt)

where ω represents the angular frequency of the oscillation. In such a situation, the
dipole moment associated with the dipole is: 

                                  p(t)=q0d sin (ωt) êz

                                                            p(t)=p0 sin (ωt) êz

where p0 = q0d represents the maximum value of dipole moment. From the above
equation, it is clear that the dipole moment also becomes the oscillatory function of
time. Such an electric dipole with the associated dipole moment oscillates with time
is known as an oscillatory electric dipole. 



Radiation from an Oscillating Electric Dipole

To  calculate  the  radiation  emitted  by  an  oscillating  electric  dipole,  we  take  an
oscillating dipole system as shown in the below figure. Now, our aim is determine the
expression for the radiation at point P located at  r1 distance from +q charge and  r2

distance from -q charge (see the figure). Moreover, the position vector  r represents
the position of point P with respect to the center O of the dipole (midpoint on the axis
of the dipole).  The vector r is oriented at angle θ with the axis. 
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Now, from the previous lectures, the retarded potential due to +q charge at point P is: 

                                       V 1=
1

4 πε0

q0 cos[ω(t−
r 1

c
)]

r 1

            ------ (1)

In the above expression, potential is calculated at retared time tr = t – r1/c.

Similarly, the retarded potential due to -q charge at point P is

                                       V 2=−
1

4 πε0

q0 cos[ω(t−
r 2

c
)]

r2

             ------ (2)
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The net retarded potential due to both the charges is: 

             V (r , t)=
1

4π ε0

(
q0 cos[ω(t−r1/c)]

r1

−
q0 cos[ω(t−r2/c)]

r2

)     ----- (3)

Now note that for the triangle AOP, length of the sides are AO=d/2, OP=r, AP=r1.  So
from the law of cosines (also called as the cosine rule) for the triangle AOP: 

                                 r1
2=r 2+(d /2)2−2 r(d /2)cosθ  

                                   r1=√r2+d2/4−r d cosθ                                    ----- (4)

Similarly, for the triangle BOP, using the law of cosines, we can have:

                             r2
2=r2+(d /2)2−2 r(d /2)cos(π−θ)

                                   r2=√r2+d2/ 4+r d cosθ                                     ----- (5)

For the dipole to be perfect, we assume r>>d (i.e. distance between charges is much
smaller than the distance of observation point from the center of the dipole).  Under
this approximation, from equation (4), we can write: 

                                   r1=r√1+
d 2

4 r2−
d cos θ

r

as (d/r) <<1, we can use the binomial expansion (1+a)1/2 = 1+(1/2)a+... and can only
consider first term and neglect higher order term. Then 

                                     r1≈r(1+
d 2

8r2 −
d

2 r
cosθ)                          

Since (d/r) <<1, so we can neglect d2/8r2  term in the above equation and we get:

                                        r1≈r(1−
d

2 r
cosθ)                                       ----- (6)

Using the similar approximation, from equation (5), we can write: 

                                        r2≈r(1+
d
2r

cosθ)                                       ----- (7)



Now, using equation (6)
                                              

                     cos [ω(t−r1/c)]≈cos[ω(t− r
c
(1−

d
2r

cosθ))]  

           

                     cos [ω(t−r1/c)]≈cos[ω(t− r
c
)+

ωd
2 c

cosθ]

cos [ω(t−r1/c)]≈cos[ω(t− r
c
)]cos( ωd

2 c
cosθ)−sin [ω(t− r

c
)]sin(

ω d
2c

cosθ) --- (8)

Similarly, from equation (7), we can get

cos [ω(t−r2/c)]≈cos[ω(t− r
c
)]cos( ωd

2 c
cosθ)+sin [ω(t− r

c
)]sin (

ωd
2 c

cosθ) --- (9)

Next,  the another approximation associated with a perfect  oscillating electric
dipole is  d<<(c/ω) or (ωd/c)<<1. Since, the wavelength associated with a wave
having angular frequency ω, λ = 2π/k=2πc/ω; then this approximation corresponds to
d << λ. Under this approximation,  (ωd/c)<<1,

                            cos(ω d
2c

cosθ)≈1   

and                 sin (
ωd
2 c

cosθ)≈
ω d
2c

cosθ        (as for small θ, cosθ=1 and sinθ=θ)

Putting these two relations in equations (8) and (9), we obtain

            cos [ω(t−r1/c)]≈cos[ω(t− r
c
)]−

ωd
2 c

cosθ sin [ω(t− r
c
)]              ---- (10)

            cos [ω(t−r2/c)]≈cos[ω(t− r
c
)]+

ωd
2 c

cosθ sin [ω(t− r
c
)]               ---- (11)

Now, from equation (6), we can write: 

                                 
1
r1

≈
1
r
(1−

d
2r

cosθ)
−1

 

Once again using the binomial expansion (1-a)-1 = 1+a-... and only retaining the first
term, we get 

                                     
1
r1

≈
1
r
(1+

d
2r

cosθ)                                              ----- (12)



In the similar way, using equation (7), we can have

                                     1
r2

≈
1
r
(1− d

2r
cosθ)                                            ----- (13)

Utilizing equations (10), (11), (12) and (13) in equation (3), we get an expression of
scalar potential of a perfect oscillating electric dipole: 

      V (r , t)=
q0

4π ε0

(
1
r
(1+

d
2 r

cosθ)(cos [ω(t−
r
c
)]−

ω d
2c

cosθ sin [ω(t−
r
c
)]))

                   −
q0

4πε0

(
1
r
(1−

d
2r

cosθ)(cos [ω(t−
r
c
)]+

ω d
2c

cosθ sin [ω(t−
r
c
)]))

       V (r , t)=
q0

4πε0 r
(
d
r

cosθcos [ω(t−
r
c
)]−

ω d
c

cosθ sin[ω( t−
r
c
)])

                  V (r , t)=
q0 d cosθ

4πε0r
(
1
r

cos[ω( t−
r
c
)]−ω

c
sin [ω(t−

r
c
)])

                   V (r , t)=
p0 cosθ

4 πε0 r
(
1
r

cos[ω( t−
r
c
)]−ω

c
sin [ω(t−

r
c
)])            ----- (14)

Remark: Note  that  in  the  limit  ω  -->  0  means  q=q0,  this  corresponds  to  the
stationary dipole. For  such a dipole, equation (14) modifies as:

                    V (r , t)=
p0 cosθ

4 πε0 r
(
1
r
×1−ω

c
×0)

                                  V (r , t)=
p0 cosθ

4 πε0 r2

This is well-known expression for the potential for the dipole.  But,  the stationary
dipole doesn’t radiate. 

To simplify the calculations,  an additional approximation is made: r >> (c/ω).
Since   λ  =  2π/k=2πc/ω,  this  approximation  corresponds  to  r>> λ. Under  this
approximation, |(1/r) cos[ω(t-r/c)]| << |(ω/c) sin[ω(t-r/c)]|. As a result, the first term in
equation (14) can be neglected and equation (14) modifies as:



                           V (r , t)=−
p0ω cosθ

4πε0 rc
sin [ω(t−

r
c
)]                              ------ (15)

In order to obtain an expression of electric field and magnetic field, our next aim is to
calculate vector potential. For this, first we note that the current flowing along the
axis of the dipole due to the oscillatory charges is: 

                                         I (t )= dq
dt

ê z            (since q=q0 cos(ωt))

                                  I (t)=−q0ωsin (ω t) êz                                       ------ (16)

As we know that vector potential associated with a wire carrying current (I) of length
L is  

                                        A(r , t)=
μ0

4π
∫

−L/2

L/2
I dl
r

                                ------ (17)
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We can treat the oscillating dipole as a current carrying wire of length d oriented
along z-axis such that the center O of the dipole is located at the origin z=0. Then the
coordinate of one end A of wire is z=-d/2 and the coordinate of another end B is z=-
d/2 (see above figure).  And we can consider length element dl = dz. The current
passing  through  the  dipole  is  given  by   equation  (16).  Using  all  these  inputs  in
equation (17) to calculate the retarded vector potential associate with the dipole, 

                                A(r ,t)=
μ0

4 π
∫

−d /2

d /2 −q0 ωsin [ω(t−r /c)] ê z dz

r

Note that as we are calculate retarded vector potential, that’s why time t is replaced
by t-(r/c) in the above expression. 



                A(r ,t )=−
μ0 q0 ωsin [ω(t−r /c)] êz

4 πr
∫

−d /2

d /2

dz  (using above approximations)

             

                                 A(r ,t)=−
μ0 p0ω

4 π r
sin [ω(t−r /c)] ê z                    ------ (18)

After calculating potentials V(r,  t) and  A(r,  t), we can deduce the expressions for
electric field and magnetic field using following relations: 

                                      E(r ,t )=−∇ V−
∂ A
∂ t

                                   ------ (19)

                                             B(r , t)=∇×A                                       ------ (20)

For evaluating the required gradient and curl of the potentials, for this problem, it is
convient to use the spherical coordinate system. From equation (15), V(r, t)=V(r, θ, t)
which means the scalar potential only depends on position coordinates r and  θ and
doesn’t depend on φ, therefore, we have

                                        ∇V =
∂V
∂r

r̂+ 1
r

∂V
∂θ

θ̂

  

Under the approximation r>> (c/ω), in the above equation, first and the last terms can
be neglected and we get, 

                                ∇V ≈
p0ω

2

4πε0 c2 (
cosθ

r
)cos[ω( t−r /c)] r̂                 

                                ∇V ≈
p0μ0ω

2

4 π
(
cosθ

r
)cos [ω(t−r /c)] r̂                ------ (21)

Taking partial time derivative of equation (18), we get 

                               
∂ A(r ,t )

∂ t
=−

μ0 p0 ω
2

4π r
cos[ω( t−r /c)] ê z



Using coordinate transformation  êz  =cosθ ˆr – sinθ ˆθ,  from equation (18),  vector
potential can be re-written as: 

                      A(r ,t)=−
μ0 p0ω

4 π r
sin [ω(t−r /c)](cosθ r̂−sin θθ̂ )           ------ (22)

Then

                    
∂ A(r ,t)

∂ t
=−

μ0 p0ω
2

4π r
cos[ω( t−r /c)](cosθ r̂−sinθ θ̂)        ------ (23)

Using equations (21) and (23) into equation (19), we get the electric field 

                        E(r ,t )=−
μ0 p0ω

2

4 π
cos [ω(t−r /c)](

sin θ
r

) θ̂                        ------ (24)

For magnetic field, we need to calculate 

                 
               ------ (25)

From equation (22), components of the vector potential are:

                             Ar(r ,θ)=−
μ0 p0ω

4π r
sin [ω(t−r /c)]cosθ

                             Aθ(r ,θ)=
μ0 p0ω

4 πr
sin [ω(t−r /c)]sin θ

 
                                                     Aφ=0        

By  straightforward  inspection  of  the  expressions  of  the  above  components  and
equation (25), it is clear that only φ-component of curl of A is non-zero. Hence, 

                                      ∇×A=
1
r
( ∂
∂r

(r Aθ)−
∂ Ar

∂θ
)φ̂                          

         



Use the compoents of A in the above expression, we get             

        ∇×A=−
μ0 p0ω

4π r
(ω

c
sinθcos [ω(t−r /c)]+

sinθ

r
sin [ω (t−r /c)]) φ̂   ------ (26)

Under the approximation r>> (c/ω), 2nd term in the above equation can be neglected,
then magnetic field 

                        B(r , t)=∇×A=−
μ0 p0ω

4π r
(ω

c
sin θcos [ω(t−r /c)]) φ̂

                               B(r , t)=−
μ0 p0 ω

2

4π c
cos [ω(t−r /c)](

sinθ
r

) φ̂               ------ (27)

Remark: From equations (24) and (27),  it  is  clear that  E and  B  are oscillatory
functions and  both are in phase. In addition,  E and  B  are perpendicular to each
other and |E|/|B|=c. It means that  E and  B  represent (spherical) electromagnetic
waves in free space. 

Now, to calculate the energy radiated by the oscillating electric dipole, we deduce the
Poynting vector: 

                                                S=
1
μ0

(E×B)

Use E and B from equations (24) and (27) for calculating S 
 

                                S=
μ0

c
{

p0ω
2

4π
cos [ω(t−r /c)](

sinθ
r

)}
2

r̂

Then, the Poynting vector averaged for a full time period is, 

                                       ⟨ S ⟩=(
μ0 p0

2ω4

32 π2 c
)

sin2θ

r2 r̂                             ------- (28)

where the time averaged value of ⟨cos2[ω(t−r /c)]⟩=1/2 is used. 

The power radiated by the dipole is then given by: 

                                          ⟨ P ⟩=∫ ⟨S⟩ .d a                                       ------- (29)



Use equation (28) into equation (29), we get 

                               ⟨ P ⟩=(
μ0 p0

2ω4

32π2 c
)∫ sin2θ

r2 r2sinθd θdφ

                                             ⟨ P ⟩=
μ0 p0

2ω4

12π c
                                 ------- (30)

From equation (28), it is clear that power radiated along the axis of the dipole is zero
as sinθ=0 because  θ=0 along the axis. The radiation by the dipole is predominantly
emitted in the space which is of the donut shape as shown in figure below. 

Reference: “Introduction to Electrodynamics” by David J. Griffiths



Thanks for the attention!


