

Basic concept of Fortran Programming

M.Sc. 2
nd

 Semester

MPHYCC-5: Modelling and Simulation

Unit I (Part 1)

Compiled by

Dr. Ashok Kumar Jha

Assistant Professor

Department of Physics, Patna University

Mob:7903067108, Email: ashok.jha1984@gmail.com

Originally Designed by

Erik Boman,

Stanford, December 1995.

Permission to use this tutorial for educational and other non-commercial purposes is granted

provided all author and copyright information is retained.

1. What is Fortran?
Fortran is a general purpose programming language, mainly intended for mathematical

computations in e.g. engineering. Fortran is an acronym for FORmula TRANslation, and was

originally capitalized as FORTRAN. However, following the current trend to only capitalize the

first letter in acronyms, we will call it Fortran. Fortran was the first ever high-level programming

languages. The work on Fortran started in the 1950's at IBM and there have been many versions

since. By convention, a Fortran version is denoted by the last two digits of the year the standard

was proposed. Thus we have

* Fortran 66
* Fortran 77

* Fortran 90 (95)

The most common Fortran version today is still Fortran 77, although Fortran 90 is growing in

popularity. Fortran 95 is a revised version of Fortran 90. There are also several versions of

Fortran aimed at parallel computers.

2. Fortran 77 Basics
A Fortran program is just a sequence of lines of text. The text has to follow a certain syntax

to be a valid Fortran program. We start by looking at a simple example:

program circle
real r, area

c This program reads a real number r and prints

c the area of a circle with radius r.

write (*,*) 'Give radius r:'
read (*,*) r

area = 3.14159*r*r

write (*,*) 'Area = ', area

stop
end

The lines that begin with with a "c" are comments and has no purpose other than to make the

program more readable for humans. Originally, all Fortran programs had to be written in all

upper-case letters. Most people now write lower-case since this is more legible, and so will we.

Program organization

A Fortran program generally consists of a main program (or driver) and possibly several

subprograms (or procedures or subroutines). For now we will assume all the statements are in

the main program; subprograms will be treated later.

 The structure of a main program is:

Program Name

Declarations

 Statement

 Stop
End

The stop statement is optional and may seem superfluous since the program will stop when it

reaches the end anyways, but it is recommended to always terminate a program with the stop

statement to emphasize that the execution flow stops there.
Column position rules

Fortran 77 is not a free-format language, but has a very strict set of rules for how the source

code should be formatted. The most important rules are the column position rules:

Col. 1 : Blank, or a "c" or "*" for comments
Col. 2-5 : Statement label (optional)

Col. 6 : Continuation of previous line (optional)

Col. 7-72 : Statements

Col. 73-80: Sequence number (optional, rarely used today)

Most lines in a Fortran 77 program starts with 6 blanks and ends before column 72, i.e.
only the statement field is used. Note that Fortran 90 allows free format.

Comments

A line that begins with the letter "c" or an asterisk in the first column is a comment. Comments

may appear anywhere in the program. The exclamation mark may appear anywhere on a line

(except in positions 2-6). Continuation

Occasionally, a statement does not fit into one single line. One can then break the statement into

two or more lines, and use the continuation mark in position 6. Example:

c23456789 (This demonstrates column position!)

c The next statement goes over two physical lines

area = 3.14159265358979
+ * r * r

Any character can be used instead of the plus sign as a continuation character. It is

considered good programming style to use either the plus sign, an ampersand, or numbers

(2 for the second line, 3 for the third, and so on). Blank spaces

Blank spaces are ignored in Fortran 77. So if you remove all blanks in a Fortran 77

program, the program is still syntactilly correct but almost unreadable for humans.

3. Variables, types, and declarations

Variable names
Variable names in Fortran consist of 1-6 characters chosen from the letters a-z and the digits 0-

9. The first character must be a letter. (Note: Fortran 90 allows variable names of arbitrary

length). Fortran 77 does not distinguish between upper and lower case, in fact, it assumes all

input is upper case. However, nearly all Fortran 77 compilers will accept lower case. If you

should ever encounter a Fortran 77 compiler that insists on upper case it is usually easy to

convert the source code to all upper case. Types and declarations

Every variable should be defined in a declaration. This establishes the type of the

variable. The most common declarations are:

integer list of variables
real list of variables

double precision list of variables

complex list of variables

logical list of variables

should be declared exactly once. If a variable is undeclared, Fortran 77 uses a set of implicit

rules to establish the type. This means all variables starting with the letters i-n are integers and all

others are real. Many old Fortran 77 programs uses these implicit rules, but you should not! The

probability of errors in your program grows dramatically if you do not consistently declare your

variables.
Integers and floating point variables

Fortran 77 has only one type for integer variables. Integers are usually stored as 32 bits (4 bytes)

variables. Therefore, all integer variables should take on values in the range [-m,m] where m is

approximately 2*10^9.

Fortran 77 has two different types for floating point variables, called real and double

precision. While real is often adequat, some numerical calculations need very high precision

and double precision should be used. Usually a real is a 4 byte variable and the double

precision is 8 bytes, but this is machine dependent. Some non-standard Fortran versions use

the syntax real*8 to denote 8 byte floating point variables.

The parameter statement
Some constants appear many times in a program. It is then often desirable to define them only

once, in the beginning of the program. This is what the parameter statement is for. It also

makes programs more readable. For example, the circle area program should rather have been

written like this:

program circle
real r, area, pi

parameter (pi = 3.14159)

c This program reads a real number r and prints

c the area of a circle with radius r.

write (*,*) 'Give radius r:'
read (*,*) r

area = pi*r*r

write (*,*) 'Area = ', area

stop
end

The syntax of the parameter statement is

parameter (name = constant, ... , name = constant)

The rules for the parameter statement are:

* The "variable" defined in the parameter statement is not a variable but rather a

constant whose value can never change
* A "variable" can appear in at most one parameter statement

* The parameter statement(s) must come before the first executable statement

Some good reasons to use the parameter statement are:

* it helps reduce the number of typos
* it is easy to change a constant that appears many times in a program

4. Expressions and assignment
Constants

The simplest form of an expression is a constant. There are 6 types of constants,

corresponding to the 6 data types. Here are some integer constants:

1
0

-100

32767

+15

Then we have real constants:

1.0
-0.25

2.0E6

3.333E-1

The E-notation means that you should multiply the constant by 10 raised to the power following

the "E". Hence, 2.0E6 is two million, while 3.333E-1 is approximately one third.

For constants that are larger than the largest real allowed, or that requires high

precision, double precision should be used. The notation is the same as for real

constants except the "E" is replaced by a "D". Examples:

2.0D-1
1D99

Here 2.0D-1 is a double precision one-fifth, while 1D99 is a one followed by 99 zeros.

The next type is complex constants. This is designated by a pair of constants (integer or real),

separated by a comma and enclosed in parantheses. Examples are:

(2, -3)
(1., 9.9E-1)

The first number denotes the real part and the second the imaginary part.

The fifth type is logical constants. These can only have one of two values:

.TRUE.

.FALSE.

Note that the dots enclosing the letters are required.

The last type is character constants. These are most often used as an array of characters,

called a string. These consist of an arbitrary sequence of characters enclosed in

apostrophes (single quotes):

'ABC'
'Anything goes!'

'It is a nice day'

Strings and character constants are case sensitive. A problem arises if you want to have an

apostrophe in the string itself. In this case, you should double the apostrophe:

'It''s a nice day'

Expressions
The simplest expressions are of the form

operand operator operand

and an example is

x + y

The result of an expression is itself an operand, hence we can nest expressions together

like

x + 2 * y

This raises the question of precedence: Does the last expression mean x + (2*y) or

(x+2)*y? The precedence of arithmetic operators in Fortran 77 are (from highest to

lowest):

**
*,/

+,-

{exponentiation}
{multiplication, division}
{addition, subtraction}

All these operators are calculated left-to-right, except the exponentiation operator **, which

has right-to-left precedence. If you want to change the default evaluation order, you can use

parentheses.

The above operators are all binary operators. there is also the unary operator - for

negation, which takes precedence over the others. Hence an expression like -x+y means

what you would expect.

Extreme caution must be taken when using the division operator, which has a quite different

meaning for integers and reals. If the operands are both integers, an integer division is

performed, otherwise a real arithmetic division is performed. For example, 3/2 equals 1, while

3./2. equals 1.5.

Assignment
The assignment has the form

variable_name = expression

The interpretation is as follows: Evaluate the right hand side and assign the resulting value to

the variable on the left. The expression on the right may contain other variables, but these

never change value! For example,

area = pi * r**2

does not change the value of pi or r, only area.
Type conversion

When different data types occur in the same expression, type conversion has to take place,

either explicitly or implicitly. Fortran will do some type conversion implicitly. For example,

real x
x = x + 1

will convert the integer one to the real number one, and has the desired effect of incrementing

x by one. However, in more complicated expressions, it is good programming practice to force

the necessary type conversions explicitly. For numbers, the following functions are available:

int
real

dble

ichar

char

The first three have the obvious meaning. ichar takes a character and converts it to an integer,

while char does exactly the opposite.

Example: How to multiply two real variables x and y using double precision and store the

result in the double precision variable w:

w = dble(x)*dble(y)

Note that this is different from

w = dble(x*y)

5. Logical expressions
Logical expressions can only have the value .TRUE. or .FALSE.. A logical expression can be

formed by comparing arithmetic expressions using the following relational operators:

.LT. meaning < (less than)

.LE. <= (less than or equal to)

.GT. > (greater than)

.GE. >= (greater than or equal to)

.EQ. = (equal to)

.NE. /= (not equal to)

So you cannot use symbols like < or = for comparison in Fortran 77, but you have to use the

correct two-letter abbreviation enclosed by dots! (Such symbols are allowed in Fortran 90,

though.)

Logical expressions can be combined by the logical operators .AND. .OR. .NOT. which have

the obvious meaning.
Logical variables and assignment

Truth values can be stored in logical variables. The assignment is analagous to the

arithmetic assignment. Example:

logical a, b
a = .TRUE.

b = a .AND. 3 .LT. 5/2

The order of precedence is important, as the last example shows. The rule is that arithmetic

expressions are evaluated first, then relational operators, and finally logical operators. Hence

b will be assigned .FALSE. in the example above.

Logical variables are seldom used in Fortran. But logical expressions are frequently used in

conditional statements like the if statement.

6. The if statements
An important part of any programming language are the conditional statements. The most

common such statement in Fortran is the if statement, which actually has several forms. The

simplest one is the logical if statement:

if (logical expression) executable statement

This has to be written on one line. This example finds the absolute value of x:

if (x .LT. 0) x = -x

If more than one statement should be executed inside the if, then the following syntax should

be used:

if (logical expression) then
statements

endif

The most general form of the if statement has the following form:

if (logical expression) then
statements

elseif (logical expression) then

statements

:

:

else

statements

endif

The execution flow is from top to bottom. The conditional expressions are evaluated in

sequence until one is found to be true. Then the associated code is executed and the control

jumps to the next statement after the endif. Nested if statements

if statements can be nested in several levels. To ensure readability, it is important to

use proper indentation. Here is an example:

if (x .GT. 0) then
if (x .GE. y) then

write(*,*) 'x is positive and x >= y'

else

write(*,*) 'x is positive but x < y'

endif

elseif (x .LT. 0) then

write(*,*) 'x is negative'

else

write(*,*) 'x is zero'

endif

You should avoid nesting many levels of if statements since things get hard to follow.

7. Loops
For repeated execution of similar things, loops are used. If you are familiar with other

programming languages you have probably heard about for-loops, while-loops, and until-

loops. Fortran 77 has only one loop construct, called the do-loop. The do-loop corresponds to

what is known as a for-loop in other languages. Other loop constructs have to be simulated

using the if and goto statements. do-loops

The do-loop is used for simple counting. Here is a simple example that prints the cumulative

sums of the integers from 1 through n (assume n has been assigned a value elsewhere):

integer i, n, sum

sum = 0
do 10 i = 1, n

sum = sum + i

write(*,*) 'i =', i

write(*,*) 'sum =', sum

10 continue

The number 10 is a statement label. Typically, there will be many loops and other statements

in a single program that require a statement label. The programmer is responsible for

assigning a unique number to each label in each program (or subprogram). Recall that column

positions 2-5 are reserved for statement labels. The numerical value of statement labels have

no significance, so any integer numbers can be used. Typically, most programmers increment

labels by 10 at a time.

The variable defined in the do-statement is incremented by 1 by default. However, you can

define any other integer to be the step. This program segment prints the even numbers between

1 and 10 in decreasing order:

integer i

do 20 i = 10, 1, -2
write(*,*) 'i =', i

20 continue

The general form of the do loop is as follows:

do label var = expr1, expr2, expr3
statements

label continue

var is the loop variable (often called the loop index) which must be integer. expr1

specifies the initial value of var, expr2 is the terminating bound, and expr3 is the

increment (step).

Note: The do-loop variable must never be changed by other statements within the loop! This

will cause great confusion.

Many Fortran 77 compilers allow do-loops to be closed by the enddo statement. The advantage

of this is that the statement label can then be omitted since it is assumed that an enddo closes

the nearest previous do statement. The enddo construct is widely used, but it is not a part of

ANSI Fortran 77.

while-loops
The most intuitive way to write a while-loop is

while (logical expr) do
statements

enddo

or alternatively,

do while (logical expr)
statements

enddo

The statements in the body will be repeated as long as the condition in the while statement is

true. Even though this syntax is accepted by many compilers, it is not ANSI Fortran 77. The

correct way is to use if and goto:

label if (logical expr) then

statements

goto label

endif

Here is an example that calculates and prints all the powers of two that are less than or equal to

100:

integer n

n = 1
10 if (n .le. 100) then

n = 2*n

write (*,*) n

goto 10

endif

until-loops
If the termination criterium is at the end instead of the beginning, it is often called an until-

loop. The pseudocode looks like this:

do
statements

until (logical expr)

Again, this should be implemented in Fortran 77 by using if and goto:

label continue
statements

if (logical expr) goto label

Note that the logical expression in the latter version should be the negation of the

expression given in the pseudocode!

Loops in Fortran 90
Fortran 90 has adopted the do-enddo construct as its loop construct. So our "counting down in

twos" example will look like this:

do i = 10, 1, -2
write(*,*) 'i =', i

end do

For while and until loops you also use the do-enddo construct, but you have to add a

conditional exit statement. The general case is:

do
statements

if (logical expr) exit

statements

end do

If you have the exit condition at the beginning it is a while loop, and if it is at the end you have

an until loop.

8. Arrays
Many scientific computations use vectors and matrices. The data type Fortran uses for

representing such objects is the array. A one-dimensional array corresponds to a vector, while a

two-dimensional array corresponds to a matrix. To fully understand how this works in Fortran

77, you will have to know not only the syntax for usage, but also how these objects are stored

in memory in Fortran 77.

One-dimensional arrays
The simplest array is the one-dimensional array, which is just a linear sequence of

elements stored consecutively in memory. For example, the declaration

real a(20)

declares a as a real array of length 20. That is, a consists of 20 real numbers stored contiguously

in memory. By convention, Fortran arrays are indexed from 1 and up. Thus the first number in

the array is denoted by a(1) and the last by a(20). However, you may define an arbitrary index

range for your arrays using the following syntax:

real b(0:19), weird(-162:237)

Here, b is exactly similar to a from the previous example, except the index runs from 0

through 19. weird is an array of length 237-(-162)+1 = 400.

The type of an array element can be any of the basic data types. Examples:

integer i(10)
logical aa(0:1)

double precision x(100)

Each element of an array can be thought of as a separate variable. You reference the i'th

element of array a by a(i). Here is a code segment that stores the 10 first square numbers in

the array sq:

integer i, sq(10)

do 100 i = 1, 10
sq(i) = i**2

100 continue

A common bug in Fortran is that the program tries to access array elements that are out of

bounds or undefined. This is the responsibility of the programmer, and the Fortran compiler will

not detect any such bugs!

Two-dimensional arrays
Matrices are very important in linear algebra. Matrices are usually represented by two-

dimensional arrays. For example, the declaration

real A(3,5)

defines a two-dimensional array of 3*5=15 real numbers. It is useful to think of the first index

as the row index, and the second as the column index. Hence we get the graphical picture:

(1,1) (1,2) (1,3) (1,4) (1,5)
(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3) (3,4) (3,5)

Two-dimensional arrays may also have indices in an arbitrary defined range. The general

syntax for declarations is:

name (low_index1 : hi_index1, low_index2 : hi_index2)

The total size of the array is then

size = (hi_index1-low_index1+1)*(hi_index2-low_index2+1)

It is quite common in Fortran to declare arrays that are larger than the matrix we want to store.

(This is because Fortran does not have dynamic storage allocation.) This is perfectly legal.

Example:

real A(3,5)
integer i,j

c

c We will only use the upper 3 by 3 part of this array.

c

do 20 j = 1, 3

do 10 i = 1, 3

a(i,j) =

real(i)/real(j) 10 continue

20 continue

The elements in the submatrix A(1:3,4:5) are undefined. Do not assume these elements are

initialized to zero by the compiler (some compilers will do this, but not all).

Storage format for 2-dimensional arrays
Fortran stores higher dimensional arrays as a contiguos linear sequence of elements. It is

important to know that 2-dimensional arrays are stored by column. So in the above example,

array element (1,2) will follow element (3,1). Then follows the rest of the

second column, thereafter the third column, and so on.

Consider again the example where we only use the upper 3 by 3 submatrix of the 3 by 5 array

A(3,5). The 9 interesting elements will then be stored in the first nine memory locations, while

the last six are not used. This works out neatly because the leading dimension is the same for

both the array and the matrix we store in the array. However, frequently the leading dimension

of the array will be larger than the first dimension of the matrix. Then the matrix will not be

stored contiguously in memory, even if the array is contiguous. For example, suppose the

declaration was A(5,3) instead. Then there would be two "unused" memory cells between the

end of one column and the beginning of the next column (again we are assuming the matrix is 3

by 3).

This may seem complicated, but actually it is quite simple when you get used to it. If you are in

doubt, it can be useful to look at how the address of an array element is computed. Each array

will have some memory address assigned to the beginning of the array, that is element (1,1). The

address of element (i,j) is then given by

addr[A(i,j)] = addr[A(1,1)] + (j-1)*lda + (i-1)

where lda is the leading (i.e. column) dimension of A. Note that lda is in general different from

the actual matrix dimension. Many Fortran errors are caused by this, so it is very important you

understand the distinction!

Multi-dimensional arrays
Fortran 77 allows arrays of up to seven dimensions. The syntax and storage format are

analogous to the two-dimensional case, so we will not spend time on this.

The dimension statement
There is an alternate way to declare arrays in Fortran 77. The statements

real A, x
dimension x(50)

dimension A(10,20)

are equivalent to

real A(10,20), x(50)

This dimension statement is considered old-fashioned style today.

Assignment
1. Write a fortran program for addition of two integers.

2. Write a fortran program for finding area of a circle with given radius.

3. Describe the construction of two dimensional array in fortran programming.

4. Describe the utility of do loop in fortran program.

Thank you

