

Estd. 1917

Quantum Field Theory
 M.Sc. $4^{\text {th }}$ Semester
 MPHYEC-1: Advanced Quantum Mechanics Unit III (Part 3)
 Topic: Quantisation of Field

Dr. Ashok Kumar Jha
Assistant Professor
Department of Physics, Patna University
Mob:7903067108, Email: ashok.jha1984@gmail.com

Quantisation of Field:

To Quantise the field, the field variables ψ and π are treated as operation functions. Just as quantum conditions,

$$
\begin{equation*}
\left[q_{i}, q_{k}\right]=\left[p_{i}, p_{k}\right]=0 \text { and }\left[q_{i}, p_{k}\right]=i \hbar \delta_{i k} \tag{1}
\end{equation*}
$$

Were used for the transition from classical to quantum particle mechanics, we achieve the transition from classical to quantum field theory by requiring that

$$
\begin{equation*}
\left[\psi_{i}, \psi_{j}\right]=\left[P_{i}, P_{j}\right]=0 \text { and }\left[\psi_{i}, P_{j}\right]=i \hbar \delta_{i j} \tag{2}
\end{equation*}
$$

Assuming the cell volumes are very small equation (2) can be written in terms of ψ and π in the following forms:

$$
\begin{align*}
& {[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi(\overrightarrow{\vec{r}}, \mathrm{t})]=[\pi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \pi(\overrightarrow{\vec{r}}, \mathrm{t})]=0} \tag{3a}\\
& {[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \pi(\vec{r}, \mathrm{t})]=i \hbar \delta(\overrightarrow{\mathrm{r}}, \vec{r})} \tag{3b}
\end{align*}
$$

where $\delta(\vec{r}, \vec{r})=1 / \delta \tau_{i}$ if $\overrightarrow{\mathrm{r}}$ and \vec{r} are in the same cell and zero otherwise. In the limit, the cellvolume approach zero,
$\delta(\vec{r}, \vec{r})$ can be replaced by the three-dimensional Dirac δ function $\delta(\vec{r}-\vec{r})$. The quantum condition for the canonical field variables ψ and π then becomes,

$$
\begin{align*}
& {[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi(\overrightarrow{\vec{r}}, \mathrm{t})]=[\pi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \pi(\vec{r}, \mathrm{t})]=0} \tag{4a}\\
& {[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \pi(\vec{r}, \mathrm{t})]=i \hbar \delta(\overrightarrow{\mathrm{r}}-\vec{r})} \tag{4b}
\end{align*}
$$

By making ψ and π non-commuting operators, we convert H, L etc., also into operators; which have eigenvalues, eigenstates etc.

Again, using the earlier concept of quantisation described during Lagrangian formulation of field, the equation of motion for any quantum dynamical variable F is obtained by replacing the Poisson bracket by the commutator bracket divided by $i \hbar$ then,

$$
\begin{equation*}
\frac{\mathrm{d} \hat{F}}{\mathrm{dt}}=\frac{[\hat{F}, \hat{H}]}{i \hbar}+\frac{\partial \hat{F}}{\partial t} \tag{5}
\end{equation*}
$$

Quantizing the Complex Scaler Field:

To analyse the QFT of a (free) complex scalar the Lagrangian of this system is

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \varphi^{*}\right)\left(\partial^{\mu} \varphi\right)-m^{2}|\varphi|^{2} . \tag{1}
\end{equation*}
$$

The fields φ and φ^{*} are complex-conjugates. We work in the mostly minus convention for the Makowski metric,

$$
\eta=(1,-1,-1,-1)
$$

The conjugate momenta are,

$$
\begin{equation*}
\pi=\frac{\partial \mathcal{L}}{\delta \partial_{0} \phi}=\partial_{0} \phi^{*}, \Pi^{*}=\frac{\delta \mathcal{L}}{\delta \partial O^{\phi^{*}}}=\partial_{0} \phi \tag{2}
\end{equation*}
$$

Thus, the Hamiltonian density is,

$$
\begin{align*}
\mathcal{H} & =\pi^{*} \dot{\phi}^{*}+\pi \dot{\phi}-\mathcal{L}\left(\phi, \partial_{0} \phi\right)=|\pi|^{2}-\left(\left(\partial_{\mu} \phi^{*}\right)\left(\partial^{\mu} \phi\right)-m^{2}|\phi|^{2}\right) \\
& =\pi^{*}(\vec{x}, t) \pi(\vec{x}, t)+\vec{\nabla} \phi^{*}(\vec{x}, t) \cdot \vec{\nabla} \phi(\vec{x}, t)+m^{2}|\phi(\vec{x}, t)|^{2} \tag{3}
\end{align*}
$$

and the Hamiltonian is therefore,
$H=\int \mathcal{H} d^{3} x=\int d^{3} x \pi^{*}(x, t) \pi(x, t)+\nabla \varphi^{*}(x, t) \cdot \nabla \varphi(x, t)+m^{2}|\varphi(x, t)|^{2}$
Let us define,

$$
\begin{align*}
\phi & =\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right) \tag{5}\\
\Pi & =\frac{1}{\sqrt{2}}\left(\dot{\phi}_{1}-i \phi_{2}\right) \tag{6}
\end{align*}
$$

with φ^{*}, π^{*} their complex conjugate, so that

$$
\begin{align*}
\phi_{1} & =\frac{1}{\sqrt{2}}\left(\phi+\phi^{*}\right) \\
\pi_{1} & =\frac{1}{\sqrt{2}}\left(\pi+\pi^{*}\right) \\
\phi_{2} & =-\frac{i}{\sqrt{2}}\left(\phi-\phi^{*}\right) \tag{7}\\
\pi_{2} & =-\frac{i}{\sqrt{2}}\left(\pi^{*}-\pi\right)
\end{align*}
$$

Performing canonical quantization means imposing the canonical commutations relations between φ, φ^{*} with their conjugate momenta. This leads to,

$$
\begin{equation*}
\left.\left.\left[\phi_{1}(\vec{x}, t), \pi_{1}(\vec{y}, t)\right)=\frac{1}{2} \right\rvert\, \phi(\vec{x}, t)+\phi(\vec{x}, t)^{*}, \pi(\vec{y}, t)+\pi^{*}(\vec{y}, t)\right]=\frac{1}{2}(i \delta(\vec{x}-\vec{y})+i \delta(\vec{x}-\vec{y}))=i \delta(\vec{x}-\vec{y}) \tag{8}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
\left[\varphi_{i}(x, t), \pi_{i}(y, t)\right]=i \delta_{i j} \delta(x-y) \tag{9}
\end{equation*}
$$

The Hamiltonian now decouples

$$
\begin{equation*}
H=\frac{1}{2} \int d^{3} x\left(\pi_{1}+i \pi_{2}\right)\left(\pi_{1}-i \pi_{2}\right)+\vec{\nabla}\left(\phi_{1}-i \phi_{2}\right) \cdot \vec{\nabla}\left(\phi_{1}+i \phi_{2}\right)+m^{2}\left|\phi_{1}+i \phi_{2}\right|^{2} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{2} \int d^{3} x \sum_{i=1}^{2} \pi_{i}^{2}+\left(\vec{\nabla}\left(\phi_{i}\right)\right)^{2}+m^{2}\left|\phi_{i}\right|^{2}=H_{1}+H_{2} \tag{11}
\end{equation*}
$$

We can quantize each of these as seen in class. The equations of motion are

$$
\begin{align*}
\dot{\phi}_{1}(\vec{x}, t) & =-i\left[\phi_{1}(\vec{x}, t), H_{1}\right]=-i \int d^{3} y\left[\phi_{1}(\vec{x}, t), \frac{1}{2} \pi(\vec{y}, t)^{2}+\frac{1}{2}\left(\vec{\nabla} \phi_{1}(\vec{y}, t)\right)^{2}+\frac{1}{2} m^{2} \phi_{1}^{2}(\vec{y}, t)\right] \\
& \left.=-2 i \frac{1}{2} \int d^{3} y \pi_{1}(\vec{y}, t) i \delta^{(3)}\right)(\vec{x}-\vec{y})=\pi_{1}(\vec{x}, t) \tag{12}\\
\dot{\pi}_{1} \vec{x}, t & =-i\left[\pi_{1}(\vec{x}, t), H_{1}\right]=-i \int d^{3} y\left[\pi_{1}(\vec{x}, t), \partial_{i} \phi_{1}(\vec{y}, t)\right] \partial_{i} \phi_{1}(\vec{y}, t)[\pi(\vec{x}, t), \phi(\vec{y}, t)] \phi(\vec{y}, t) \\
& =-i \int d^{3} y \partial_{i} \phi_{1}(\vec{y}, t) \partial_{i}\left(-i \delta^{(3)}(\vec{x}-\vec{y})\right)+m^{2} \phi(\vec{y}, t)\left(-i \delta^{(3)}(\vec{x}-\vec{y})\right) \\
& \left.=-\int d^{3} y\left(-\partial_{i} \partial^{i} \phi\left({ }^{\vec{r}}, t\right)\right)+m^{2} \phi(\vec{x}, t)\right) \delta^{(3)}(\vec{x}-\vec{y})=\nabla^{2} \phi_{1}(\vec{x}, t)-m^{2} \phi_{1}(\vec{x}, t) \tag{13}
\end{align*}
$$

The last equality is obtained using integration by parts. So, overall, we have

$$
\begin{equation*}
\partial_{t}^{2} \varphi_{1}=\partial_{t}^{2} \pi_{1}=\nabla^{2} \varphi_{1}+m^{2} \varphi_{1} \tag{14}
\end{equation*}
$$

which is just the Klein-Gordon equation

$$
\begin{equation*}
\left(\partial_{t}^{2}-\nabla^{2}+m^{2}\right) \varphi_{1}=0 \tag{15}
\end{equation*}
$$

Taking the Fourier Transform of this equation,

$$
\begin{equation*}
\phi_{1}=\int \frac{d^{3} p}{(2 \pi)^{3}} e^{i \vec{p} \vec{x}} \tilde{\phi}_{1}(\vec{p}, \quad) \tag{16}
\end{equation*}
$$

leads to the equation,

$$
\begin{equation*}
\left(\partial_{t}^{2}+p^{2}+m^{2}\right) \tilde{\varphi_{1}}=0 \tag{17}
\end{equation*}
$$

The modes with different momenta are decoupled in momentum space, and we have the equation of motion of a Harmonic Oscillator (HO) with $\omega_{p}=\sqrt{p^{2}+m^{2}}$ at every p. That is, the Klein-Gordon equation is equivalent to an infinite number of Harmonic Oscillators. The solution, as you well know, is

$$
\begin{equation*}
\tilde{\phi}_{1}(\vec{p}, t)=\left(a_{p}^{(1)} e^{\left.-i \omega_{p} t\right)}+a_{p}^{(2)} e^{\left.i \omega_{p} t\right)}\right) \sqrt{\frac{1}{2 \omega_{p}}} \tag{18}
\end{equation*}
$$

The field φ_{1} is real, and this means that $\tilde{\phi}_{1}(\vec{p}, t)=\tilde{\phi}_{1}^{*}(-\vec{p}, t)$ Therefore, we obtain

$$
\begin{equation*}
\tilde{\phi}_{1}(\vec{p}, t)=\left(a_{p} e^{\left.-i \omega_{p} t\right)}+a_{-p}^{*} e^{\left.i \omega_{p} t\right)}\right) \sqrt{\frac{1}{2 \omega_{p}}} \tag{19}
\end{equation*}
$$

Upon quantization, we promote the coefficients a_{p} to operators (replacing complex conjugation with Hermitian conjugation) obtaining

$$
\begin{array}{r}
\phi_{1}(\vec{x}, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left(a_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}+a_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right) \\
\pi_{1}(\vec{x}, t)=\dot{\phi}_{1}=-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{2}}\left(a_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}-a_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right) \tag{20}
\end{array}
$$

If we now invert the Fourier transform and use the canonical commutation relations to

$$
\left[\varphi_{1}(x, t), \pi_{1}(y, t)\right]=i \delta(x-y)
$$

we will see that,

$$
\begin{equation*}
\left[{ }^{a_{p}}, a_{p^{\prime}}^{\dagger}\right]={ }_{(2 \pi)^{3}} \delta\left(p-p^{0}\right) \tag{21}
\end{equation*}
$$

Equivalently, we will show that this commutation relation leads to the canonical one

$$
\begin{align*}
{\left[\phi_{1}(\vec{x}, t), \pi_{1}(\vec{y}, t)\right]=} & -\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}\left[a_{p}, a_{p^{\prime}}^{\dagger}\right] e^{i\left(\vec{p} \vec{x}-p^{\prime} \vec{y}\right)-i\left(\omega_{p}-\omega_{p^{\prime}}\right) t}+\left[a_{p}^{\dagger}, a_{p^{\prime}}\right] e^{-i\left(\vec{p} \vec{x}-p^{\prime} \vec{y}\right)+i\left(\omega_{p}-\omega_{p^{\prime}}\right) t} \\
= & -\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{d^{3} p^{\prime}}{(2 \pi)^{3}}(2 \pi)^{3} \delta\left(p-p^{\prime}\right)\left(-e^{i\left(\vec{p} \vec{x}-p^{\prime} \vec{y}\right)-i\left(\omega_{p}-\omega_{p^{\prime}}\right) t}-e^{-i\left(\vec{p} \vec{x}-p^{\prime} \vec{y}\right)+i\left(\omega_{p}-\omega_{p^{\prime}}\right) t}\right) \\
& =i \int \frac{d^{3} p}{(2 \pi)^{3}} e^{i p(x-y)}=i \delta(x) \tag{22}
\end{align*}
$$

We can repeat this procedure for the real field φ_{2}, and obtain

$$
\begin{array}{r}
\phi_{1}(\vec{x}, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left(b_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}+b_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right) \tag{23}\\
\pi_{1}(\vec{x}, t)=\dot{\phi}_{1}=-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{2}}\left(b_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}-b_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right)
\end{array}
$$

Upon returning to the original complex field we have

$$
\left.\begin{array}{l}
\phi(\vec{x}, t)=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}(\underbrace{\left(\frac{a_{p}+i b_{p}}{\sqrt{2}}\right)}_{A_{p}} e^{i\left(\overrightarrow{p x}-\omega_{p} t\right)}+\underbrace{\left(\frac{a_{p}^{\dagger}+i b_{p}^{\dagger}}{\sqrt{2}}\right)}_{B_{p}^{\dagger}} e^{-i\left(\overrightarrow{p x}-\omega_{p} t\right)}) \\
\phi^{\dagger}(\vec{x}, t)=\frac{1}{\sqrt{2}}\left(\phi_{1}-i \phi_{2}\right)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}(\underbrace{\left(\frac{a_{p}-i b_{p}}{\sqrt{2}}\right)}_{B_{p}} e^{i\left(\overrightarrow{p x}-\omega_{p} t\right)}+\underbrace{\left(\frac{a_{p}^{\dagger}-i b_{p}^{\dagger}}{\sqrt{2}}\right)}_{A_{p}^{\dagger}} e^{-i\left(\overrightarrow{p x x}-\omega_{p} t\right)}) \tag{25}
\end{array}\right)
$$

It is easy to verify that these new fields satisfy,

$$
\begin{align*}
& {\left[A_{p}, B_{p^{\prime}}\right]=\left[A_{p}^{\dagger}, B_{p^{\prime}}^{\dagger}\right]=\left[A_{p}, B_{p^{\prime}}\right]=\left[B_{p}, B_{p^{\prime}}\right]=0} \tag{26}\\
& {\left[A_{p}, A_{p^{\prime}}^{\dagger}\right]=\left[B_{p}, B_{p^{\prime}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}\left(\vec{p}-\overrightarrow{p^{\prime}}\right) .} \tag{27}
\end{align*}
$$

Computing the Hamiltonian:

We have, with these definitions, the following mode expansion

$$
\begin{align*}
\phi(\vec{x}, t) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left\{A_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}+B_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right\} \tag{28}\\
\phi^{\dagger}(\vec{x}, t) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left\{B_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}+A_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right\} \tag{29}\\
\pi(\vec{x}, t) & =-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{2}}\left\{B_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}-A_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right\} \tag{30}\\
\pi^{\dagger}(\vec{x}, t) & =-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{2}}\left\{A_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}-B_{p}^{\dagger} e^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}\right\} \tag{31}
\end{align*}
$$

with $\omega_{p}=\sqrt{p^{2}+m^{2}}$. The Hamiltonian of a real scalar field is

$$
\begin{equation*}
H=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p}\left[a_{p}^{\dagger} a_{p}\right]+\text { const } \tag{32}
\end{equation*}
$$

Therefore, the Hamiltonian of the complex field is (ignoring the constant)

$$
\begin{align*}
H & =\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p}\left[a_{p}^{\dagger} a_{p}+b_{p}^{\dagger} b_{p}\right] \\
& \left.=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{p}\left[A_{p}^{\dagger} A_{p}+B_{p}^{\dagger} B_{p}\right)\right] \tag{33}
\end{align*}
$$

Now, some comments are in order

- The operator φ destroys A quanta and creates B 's. φ^{\dagger} does the opposite.
- The vacuum is defined by $A|0>=B| 0>=0$. There is a two-fold degeneracy of the spectrum

Notice that the theory, (specifically, the Lagrangian density), is invariant under $\varphi \leftarrow e^{i \alpha} \varphi$. In terms of φ_{1} and φ_{2} this is

$$
\begin{equation*}
\binom{\phi_{1}}{\phi_{2}}=O\binom{\phi_{1}}{\phi_{2}} \tag{34}
\end{equation*}
$$

where $O_{i j}$ is a 2×2 orthogonal matrices.
The conserved charge for the U (1) symmetry is

$$
\begin{equation*}
Q=i \int d^{3} x\left(\phi \partial_{t} \phi^{\dagger}-\phi^{\dagger} \partial_{t} \phi\right)=i \int d^{3} x\left(\phi \pi-\phi^{\dagger} \pi^{\dagger}\right) \tag{35}
\end{equation*}
$$

In terms of the creation and annihilation operators, we get

$$
\begin{align*}
& Q=i \int \frac{d^{3} p d^{3} k}{(2 \pi)^{6}} \frac{i \sqrt{\omega_{p}}}{2 \sqrt{\omega_{k}}} \int d^{3} x\left[\left(A_{k} e^{i\left(\vec{k} \vec{x}-\omega_{k} t\right)}+B_{k}^{\dagger} e^{-i\left(\vec{p} \vec{k}-\omega_{k} t\right)}\right)\left(A_{p}^{\dagger} p^{-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}-B_{p} e^{i\left(\overrightarrow{p x}-\omega_{p} t\right)}\right)\right. \tag{36}\\
& \left.-\left(A_{k}^{\dagger} e^{-i\left(\vec{k} \vec{x}-\omega_{k} t\right)}+B_{k} e^{i\left(\vec{k} \vec{x}-\omega_{k} t\right)}\right)\left(-A_{p} e^{i\left(\vec{p} \vec{x}-\omega_{p} t\right)}+B_{p}^{\dagger} e^{-i\left(\overrightarrow{p x} x-\omega_{p} t\right)}\right)\right]
\end{align*}
$$

Integrate over space. The mixed terms $A B, A^{\dagger} B^{\dagger}$ will cancel each other. For the other terms, use

$$
\begin{equation*}
\int \frac{d^{3} k}{(2 \pi)^{3}} \int d^{3} x e^{i\left(\vec{k} \vec{x}-\omega_{k} t\right)-i\left(\vec{p} \vec{x}-\omega_{p} t\right)}=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{-i \omega_{k} t+i \omega_{p} t} \delta^{(3)}(\vec{p}-\vec{k})=1 \tag{37}
\end{equation*}
$$

We get,

$$
\begin{equation*}
Q=-\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(A_{p} A_{p}^{\dagger}-B_{p}^{\dagger} B_{p}+A_{p}^{\dagger} A_{p}-B_{p} B_{p}^{\dagger}\right)=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(A_{p}^{\dagger} A_{p}-B_{p}^{\dagger} B_{p}\right) \tag{38}
\end{equation*}
$$

The number of A excitations minus the number of B excitations is conserved. Since these are free fields, this is not a very interesting statement, but such symmetries also exist in interacting theories.

Some commutators

$$
\begin{align*}
{\left[H, A_{p}^{\dagger}\right] } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \omega_{k} A_{k}^{\dagger}\left[A_{k}, A_{p}^{\dagger}\right]=\omega_{p} A_{p}^{\dagger} \tag{39}\\
{\left[H, A_{p}\right] } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \omega_{k}\left[A_{k}^{\dagger}, A_{p}\right] A_{k}=-\omega_{p} A_{p}
\end{align*}
$$

and similarly, for B. The meaning is that $A^{\dagger}{ }_{p}$ and $B_{p}{ }^{\dagger}$ increase the energy by ω_{p} while A_{p} and B_{p} decrease the energy by ω_{p}. We can also compute the commutator with the charge

$$
\begin{equation*}
\left[Q, A_{p}^{\dagger}\right]=A_{p,}^{\dagger}\left[Q, B_{p}^{\dagger}\right]=-B_{p}^{\dagger},\left[Q, A_{p}\right]=-A_{p},\left[Q, B_{p}\right]=B_{p} . \tag{40}
\end{equation*}
$$

Therefore, the A-particle has charge 1 and the B-particle has charge -1.

Reference:

1. An Introduction to Quantum Field Theory by Mrinal Dasgupta
2. QUANTUM FIELD THEORY A Modern Introduction by Michio Kaku
3. First Book of Quantum Field Theory by Amitabha Lahiri \& P. B. Pal
4. Quantum mechanics by G.S. Chaddha
