
Introduction To python

By

Dr. Santosh Prasad Gupta

Department of Physics

Patna University

Patna

MPHYCC-05: Modeling and Simulation

Unit II: Introduction to Python Programming

 High level language and low level language are

the programming languages’s types.

 High level: programmers can easily understand or interpret

or compile in comparison of machine language: Examples

of high level languages are C, C++, Java, Python, etc.

 Low level: Machine can easily understand the low level

language in comparison of human beings.

 Low-level languages can convert to machine code without

a compiler or interpreter – second-generation programming

languages use a simpler processor called an assembler.

 Example: assembly and machine code

Low level and high level Language

Lecture I

https://www.geeksforgeeks.org/introduction-to-programming-languages/
https://www.geeksforgeeks.org/introduction-to-programming-languages/
https://www.geeksforgeeks.org/introduction-to-programming-languages/
https://www.geeksforgeeks.org/introduction-to-programming-languages/
https://www.geeksforgeeks.org/introduction-to-programming-languages/
http://www.geeksforgeeks.org/c/
http://www.geeksforgeeks.org/c-plus-plus/
http://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/python-programming-language/
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Second-generation_programming_language
https://en.wikipedia.org/wiki/Assembly_language

compiler

 A compiler is a computer program that translates

computer code written in one programming language

(the source language) into another language (the target

language).

 The name compiler is primarily used for programs that

translate source code from a high-level programming

language to a lower level language (e.g., assembly

language, object code, or machine code) to create an

executable program

Flow chart for compiling and running a programme

History of Python

 Created in 1989 by Guido van Rossum

• Created as a scripting language for administrative tasks

• Based on All Basic Code (ABC) and Modula-3

• Added extensibility

• Named after comic troupe Monty Python

 Released publicly in 1991

• Growing community of Python developers

• Evolved into well-supported programming language

 Python is high level language

 Download the software from the site:

• https://www.python.org/downloads/windows/

Installing python

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

 Download the software from the site:

• https://www.jetbrains.com/pycharm/download/#section=windows

Installing python: PyCharm

https://www.jetbrains.com/pycharm/download/

Programming in python

 IDLE Interactive Shell: simple integrated development

environment (IDE) that comes with Python. It’s a program

that allows you to type in your programs and run them

Math operator

Order of operation

 Exponentiation gests first, followed by multiplication and

division (including // and %) and addition and subtraction come

last

PYTHON AS A CALCULATOR

COMMENT, PRINT, INPUT

 #........... For commenting single line

 ‘ ‘ ‘…………

 ……………

 …………… ’ ’ ’ commenting multiple line

More on input and print

a = eval(input('Enter the value of first number:'))
b=eval(input('Enter the value of second number:'))
print(a*b,'----',a+c,'----',b+c)

 \n new line

 \t tab

 \’ for printing ’

 \” for printing ”

 print ('-----\t'*5)

 print('-----\t\t\t'*5)

 print('-----\n'*5)

 print('----\''*5)

 print('----\"'*5)

 print('----%'*5)

 print('--- # % & " '*5)

a = eval(input('Enter the value of first number:'))
b=input('Enter the value of second number:'))
print('----',a+b,'----')

 for loop

 if

 elif

 while

 Probably the most powerful thing about computers is that they

can repeat things over and over very quickly.

 There are several ways to repeat things in Python, the most

common of which is the for loop.

print hello in ten times
for i in range(10):
 print('Hello')

print hello in ten times
for i in range(10):
 print('Hello’,end=‘’)

for loop

Lecture II

print('A')
print('B')
for i in range(5):
 print('C')
 print('D')
print('E')
print(‘loop is also over')

 The value we put in the range function determines how many

times we will loop.

 The way range works is it produces a list of numbers from

zero to the value minus one. For instance, range(5) produces

five values: 0, 1, 2, 3, and 4.

Statement Values generated
range(10) 0,1,2,3,4,5,6,7,8,9
range(1,10) 1,2,3,4,5,6,7,8,9
range(3,7) 3,4,5,6
range(2,15,3) 2,5,8,11,14
range(9,2,-1) 9,8,7,6,5,4,3

Q. Write a program that prints out a list of the integers from

 1 to 20 and their squares. The output should look like this:

1 --- 1

2 --- 4

3 --- 9

...

20 --- 400

for i in range(1,21):
 print(i,'---',i*i)

range

try this
for i in range(1,21):
 print(‘*’*i)

Multiplication table: nested for loop

for i in range(1,11):
 for j in range(1,11):
 print((i*j),end=' ')
 print()
try putting more print()

for i in range(1,11):
 for j in range(1,11):
 print('{:3d}'.format(i*j),end=' ')
 print()
try putting more print()

Conditional operators

The comparison operators are ==, >, <, >=, <=, and !=.

That last one is for not equals. Here are a few examples:

Expression Description
if x>5: if x is greater than 5
if x>=5: if x is greater than or equal to 5
if x==5: if x is 5
if x!=5: if x is not 5

if statement

 if statement: when we only want to do something provided

something else is true

There are three additional operators used to construct
 more complicated conditions: and, or, and not

a=eval(input('Enter your marks:'))
if a>=60 and a<=80:
 print('your grade is B')

 Order of operations: and is done before or, so if you have

a complicated condition that contains both, you may need

parentheses around the or condition.

a=eval(input('Enter your marks:'))
if a>=60 or a<=80:
 print('your grade is B')

a=eval(input('Enter your marks:'))
if a!=60 or a!=80:
 print('your grade is B')

Lecture III

marks = eval(input('Enter your score: '))
if marks >=90:
 print('A')
if marks >=80 and marks<90:
 print('B')
if marks >=70 and marks<80:
 print('C')
if marks >=60 and marks<70:
 print('D')
if marks <60:
 print('F')

elif statement

marks = eval(input('Enter your score: '))
if marks >=90:
 print('A')
elif marks >=80:
 print('B')
elif marks >=70:
 print('C')
elif marks >=60:
 print('D')
else:
 print('F')

while statement

count = 0
while (count < 9):
 print('The count is:', count)
 count = count + 1
print('bye!')

var = 1
while var == 1: # This constructs an infinite loop
 num=eval(input('Enter a number :'))
 print('You entered:', num)
print('Good bye!')

Getting help from Python

 There is documentation built into Python known as module

 Example: Python has a module called math that contains

familiar math functions, including sin, cos, tan, exp, log,

log10, factorial, sqrt

help()
help(‘module’)
import math
help(math)
from math import sin, pi
print(sin(pi/2))

Lecture IV

import random
print(random.random()) # Random float x, 0.0 <=
 x < 1.0
print(random.uniform(1, 10)) # Random float x, 1.0 <=
 x < 10.
print(random.randint(1, 10)) # random integer from 1
 to 10, endpoints included
print(random.randrange(0, 101, 3)) # integer from 0 to
 100, divided by three
print(random.choice('abcdefghij')) # Choose a random element

print(random.sample([1, 2, 3, 4, 5], 3)) # Choose 3 elements

items = [1, 2, 3, 4, 5, 6, 7]
random.shuffle(items)
print(items)

Working with random

import random
for i in range(100):
 print(random.random())

More with with random

Strings

 Strings are a data type in Python for dealing with text

 A string is created by enclosing text in quotes.

 either single quotes, ', or

 double quotes, ".

 A triple-quote can be used for multi-line strings.

s = ‘Hi How are You?'
t = “Please go through it"
m = """This is a long string that is
spread across two lines.""“
print(s,'\n',t,'\n',m)

 num = eval(input('Enter a number: '))
 string = input('Enter a string: ')

 The empty string ‘ ’ is the string equivalent of the number 0. It is a

string with nothing in it.

 Length of a string (how many characters it has), use the built-in

function len. For example, len('Hello') is 5.

 The operators + and * can be used on strings.

string = input('Enter a string: ')
print(len(string))
print(‘AB’+ ‘CD’) ABCD
print(‘Hi’*4) HiHiHiHi
print(‘A’+ ‘7’+ ‘B’) A7B

s = ''
for i in range(10):
 t = input('Enter a letter: ')
 if t=='a' or t=='e' or t=='i' or t=='o' or t=='u':
 s = s + t
print(s)
if 'a' in s:
 print('Your string contains the letter a.')
else:
 print('a is not contained in your string')

Indexing: Python uses square brackets to index. The
table below gives some examples of indexing the
string s='Python'.
Statement Result Description
s[0] P first character of s
s[1] y second character of s
s[-1] n last character of s
s[-2] o second-to-last character of s

A slice is used to pick out part of a string.
s='abcdefghij'.
index: 0 1 2 3 4 5 6 7 8 9
letters: a b c d e f g h i j
Code Result Description
s[2:5] cde characters at indices 2, 3, 4
s[:5] abcde first five characters
s[5:] fghij characters from index 5 to the end
s[-2:] ij last two characters
s[:] abcdefghij entire string
s[1:7:2] bdf characters from index 1 to 6, by twos
s[: :-1] jihgfedcba a negative step reverses the string

s='abcdefghij'
print(s[0],s[1],s[2],s[-1],s[5])
print(s[2:7],'\n',s[:5], '\n',s[: : -1])

Strings come with a ton of methods, Here are some of the
most useful ones: Method Description
lower() returns a string with in lowercase
upper() returns a string with in uppercase
replace(x,y) returns a string with x replaced by y
count(x) counts the number of x in the string
index(x) returns the location of the first occurrence of x
isalpha() returns True if every character of the string is
a letter

s='abcdefghij'
for c in s:
 print(c)
p=s.upper()
print(p)
m=p.replace('A','L')
print(m)
print(s.count('a'))

s='abcdefghij'
for i in range(len(s)):
 print(s[i])

s='abcdefghij'
for i in range(len(s)):
 if s[i]=='h':
 print(i)

Printing name in funny way:
name = input('Enter your name: ')
for i in range(len(name)):
print(name[:i+1])

Secrete message:
alphabet = 'abcdefghijklmnopqrstuvwxyz'
key = ‘uznlwebghjqdyvtkfxompciasr'
secret_message = input('Enter your message: ')
secret_message = secret_message.lower()
for c in secret_message:
 if c.isalpha():
 print(key[alphabet.index(c)],end='')
 else:
 print(c, end='')

List

L=[1,2,3,4,5] # example of list
L=[] #empty list
L = eval(input('Enter a list: ')) # taking input list
print('The first element is ', L[2])

Expression Result
[7,8]+[3,4,5] [7,8,3,4,5]
[7,8]*3 [7,8,7,8,7,8]
[0]*5 [0,0,0,0,0]

Lecture V

List function and methods

Assume L=[6,7,8]

ls=eval(input('enter the list:')) # importing list
print('The list is:',ls)
from random import randint
l=[] # new list
count=0
for i in range(50):
 l.append(randint(1,100))
 if l[i]>50:
 count=count+1
print(l,'\n',count)

More with List

from random import shuffle, choice, sample
names = ['Joe', 'Bob', 'Sue', 'Sally', 'Santosh']
print(sample(names, 2))
print(choice(names))

join

The join method is in some sense the opposite of split. It is a string method

that takes a list of strings and joins them together into a single string. Here

are some examples, using the list

L = ['A','B','C']

L=['a','b','c']
print(' 9999'.join(L))

Two dimensional List
L=[[]]

L=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]
print(L[2][3])

from pprint import pprint

L=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]

###################################

printing the list

for r in range(3):

 for c in range(4):

 print(L[r][c], end=" ")

 print()

###################################

pprint(L)

printing row

print(L[1])

####### printing length and column

print(len(L))

print([L[i][3] for i in range (len(L))])

str, int, float

Convert float, int to string or int into float and vice-versa

Lecture VI

Formatting

 For left justify : >
 For right justify : <
 For center justify : ^

for integer for left justify
print('{:<3d}'.format(2))
print('{:<3d}'.format(25))
print('{:<3d}'.format(138))
for integer for right justify
print('{:>3d}'.format(2))
print('{:>3d}'.format(25))
print('{:>3d}'.format(138))
for integer for center justify
print('{:^5d}'.format(2))
print('{:^5d}'.format(252))
print('{:^5d}'.format(13856))
print('{:^7.2f}'.format(13856))

 For integer use: d
 For float use: f
 For string use: s

Dictionaries

 A dictionary is a more general version of a list.

 Example: list of days in the months of a year

days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # this list

 Here is the dictionary

days = {'January':31, 'February':28, 'March':31,
'April':30,'May':31, 'June':30, 'July':31,
'August':31,'September':30, 'October':31,
'November':30, 'December':31}
 Use {} for dictionary

 ‘January’, ‘February’ etc. are the keys

Changing the value of Key, adding new key and Deleting key

days[‘January’]=35 # changing the value of key

days[‘King’]=31 # adding new key and value

del days[‘May’] # deleting a key

Animal = {'dog' : 'has a tail and goes woof!',
'cat' : 'says meow',
'mouse' : 'chased by cats’, ‘lion’: ‘King of
Jungle’}

word = input('Enter a word: ')
print('The definition is:', Animal[word])

Example: Dictionary

alphabet = {'A':100, 'B':200, 'c':300, 'd':400}
letter = input('Enter a letter: ')
if letter in alphabet:
 print('The value is', alphabet[letter])
else:
 print('Not in dictionary')

Another of creating dictionary

 dict function is another way to create a dictionary. one use

for it is kind of like the opposite of the items method:

d = dict([('A',100),('B',300)])

Function

 Functions are useful for breaking up a large program to make it

easier to read and maintain.

 Also useful if find yourself writing the same code at several

different points in your program.

 Functions are defined with the def statement. The statement ends

with a colon, and the code that is part of the function is indented

below the def statement.

def print_hello(n):
 print('Hello!‘*n)
print_hello(5)

def draw_square():
 print('*' * 15)
 print('*', ' '*11, '*')
 print('*', ' '*11, '*')
 print('*' * 15)
draw_square()

def convert(t):
 return t*9/5+32
print(convert(20))

from math import pi, sin
def deg_sin(x):
 return sin(pi*x/180)
print(deg_sin(30))

defining the factorial
def fact(x):
 s=1
 for i in range(1,x+1):
 s=s*i
 return s
print(fact(5))

def f(x):
 def f1(x):
 s=x**x
 return s
 def f2(x):
 y=x**3
 return y
 g=f1(x)+f2(x)
 return g
print(f(2))

Nested function

