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Solving Ordinary Differential Equations Numerically

Most of the differential equations, representing physical systems, are non-linear and, hence,
not analytically solvable.  Although there are numerous techniques for finding the analytic
solution of first order differential eqautions, we are unable to easily obtain closed form (i.e.,
a representation of the solution in terms of a finite number of simple functions; not like
power series solutions having infinite terms) analytic solutions for many equations.  Then
numerical methods become nessessity. First we will discuss the underlying concepts which
are common to most of numerical methods for solving ODEs. 

For the purpose, we consider a general first order ODE

     dy
dx

=f (x , y)  with the initial condition y (x=x0)=y 0 find y(x) for x0 <x<L  ----(1)

Now, our aim is to solve the ODE (i.e. calculate the values of unknown variable y at known
x values) with the given initial condition. One of the simple numerical method to solve such
an equation is the Euler’s method. 

EULER’S METHOD

To discuss the method,  we note that,  in reality,  the  variables  x  and y  are continuous.
Therefore, in principle, we have to calculate the values of  y at infinite values (points) of x,
which is not possible by computers.  As a result,  in all  the numerical  methods, we only
calculate the values of y at the finite values of x. For example, suppose we want to find the
values of  y  at  xi=x0+ih (where i=1,2,3....n).  This process of replacing infinite values of x
with finite values of x is called descretization of the domain.
To further illustrate it,  in the following, we show a figure. 

            x0=x0           x1=x0+h    x2=x0+2h   x3=x0+3h ........                            xn=x0+nh
                              

The figure shows the descretization of the domain [x0,L] into n+1 evenly spaced points  xi

where xi=x0 +ih (where i=1,2,3...n). The value of y at the first point x0 is known to us by the
initial condition. Also note that the last point is xn=x0 +nh=L and the spacing between two
adjacent points (also known as “grid-spacing”)

                                     h=
(xn−x0)

n
=

(L− x0)

n
                   ------ (2)

Clearly,  the  grid-spacing  h decreases  as  we  increase  n (which  also  known  as  “grid-
resolution”). 
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Let’s assume that the dashed curve in the above figure represents the actual solution  y(x)
between  x0 < x < x0+h. Now we draw a secant line between x=x0 and x=x0+h on the curve.
For different h values,  we get different secant lines shown in color blue, green and red in
the above figure. It is evident that for a smaller value of  h, the secant line approximately
represents the tangent of the curve at x=x0 point. Therefore, for a small value of h, 

                           
dy
dx

(x=x0)≈
y (x=x0+h)− y(x=x 0)

h
                   ------------- (3)

From equation (1), the slope (dy/dx) at x=x0 is f(x0, y0). Put this in equation (3) we get, 

                             y(x=x0 +h)=y(x=x0) +h f(x0, y0)
                                y(x=x1)=y0 +h f(x0, y0)
                                  y1=y0+h f(x0, y0)                                                      --------------- (4)

If we do the similar procedure for the interval  x0+h < x < x0+2h (i.e. x1< x < x2), we can
obtain 
                          y2=y1+h f(x1, y1)

The formula can be generalized for the interval  x0+ih < x < x0+(i+1)h (i.e. xi< x < xi+1) as:

                      y(i+1)=y(i)+h f(x(i), y(i))                                                 ---------------- (5)

Example:  Solve the differential equation                      

                         dy
dx

=−y                                                           --------------- (6)

find y for x ε [0, 2] with the initial condition y(x=0)=y0=1.

For solving the equation, first we descretize the domain x ε [0, 2]. 
If we take n=5 then h=(2-0)/5=0.4
             
               x0=0          x1=0.4        x2=0.8       x3=1.2      x4=1.6      x5=2
 



From the comparison of equations (1) and (6), we know 
                           f(x,y)=-y

Using equation (5) with h=0.4,
           y(x1=0.4)=y1= y0 + h f(x0, y0)
                              y1 =y0 + h (-y0)
                             y1= 1 + 0.4 (-1)=0.6
  
            y(x2=0.8)=y2= y1 + h f(x1, y1)
                              y2 =y1 + h (-y1)
                             y2= 0.6 + 0.4 (-0.6)=0.36 

             y(x3=1.2)=y3= y2 + h f(x2, y2)
                              y3 =y2 + h (-y2)
                             y3= 0.36 + 0.4 (-0.36)=0.216

           y(x4=1.6)=y4= y3 + h f(x3, y3)
                              y4 =y3 + h (-y3)
                             y4= 0.216 + 0.4 (-0.216)=0.1296

         y(x5=2.0)=y5= y4 + h f(x4, y4)
                              y5 =y4 + h (-y4)
                             y5= 0.1296 + 0.4 (-0.1296)=0.07776

Note that the exact solution of the differential equation (6) is y=e-x. Now calculate the values
of y at x=0.4, 0.8, 1.2, 1.6, 2.

                     y(0.4)=0.6703
                     y(0.8)=0.4493
                     y(1.2)=0.3011
                     y(1.6)=0.2019
                     y(2)=0.1353
              
If we compare the exact values of y with the numerically calculated values (y1, y2,  y3, y4, y5)
using the Euler’s method, we found that there is difference between the exact values and the
numerical  values.  The  reason  for  the  difference  is  the  errors  arise  in  the  numerical
calculations due to the descretization of the domain and rounding-off the numbers. From the
comparison, we can see that the contributation of the errors leads to a large deviation of
solutions obtained from the Euler’s method from the exact ones and, therefore, for practical
purposes, the method is not used. Instead, another more accurate method, known as “Runge-
Kutta Methods”, is generally used.     



                        Algorithm to Write a Program of  the Euler’s method

Problem:  
dy
dx

=f (x , y)  with the initial condition y (x=x0)=y 0 find y(x) for x0 <x<L

1. Input x0,  L,  y0, n

2. h=(xn-x0)/n

3. Do iteraction (i=1,n)
  {x1=x0+h;
   s=f(x0, y0)
   y1=y0+h*s
   write x1, y1

   y0=y1

     x0=x0  }

4. end 

C- Program of  the Euler’s method

Problem:  
dy
dx

=−y  with the initial condition y (x=0)=1 find y(x) for 0 <x<2

#include <stdio.h>
#include <math.h>
int main()
{float f, x0, l, y0, h, x1, y1;
int n,i;
printf("enter the value of n \n");
scanf("%d",&n);
printf("enter the initial point x0, last point L and initial condition y0:\n");
scanf("%f %f %f",&x0,&l,&y0);
h=(l-x0)/n;

for(i=1;i<=n;i++)
{x1=x0+h;
f=-y0;
y1=y0+h*f;
printf("x[%d] and y[%d]:%f\t\t%f \n",i,i,x1,y1);
x0=x1;
y0=y1;}

return 0;}
        



Output of the program:

enter the value of n 
5
enter the initial point x0, last point L and initial condition y0:
0 2 1
x[1] and y[1]:0.400000 0.600000 
x[2] and y[2]:0.800000 0.360000 
x[3] and y[3]:1.200000 0.216000 
x[4] and y[4]:1.600000 0.129600 
x[5] and y[5]:2.000000 0.077760 


