Curvature and Gradient Drift Motions

Course: MPHYEC-01I Plasma Physics (M.Sc. IV Sem)

Dr. Sanjay Kumar

Assistant Professor
Department of Physics
Patna University
Contact Details: Email-sainisanjay35@gmail.com
Contact no- 9413674416

Lecture 6: Unit-I

Curvature Drift

- We consider curved field lines (without any gradient) and focus on a field line with radius of curvature \mathbf{R}_{c}.
- Set-up a local cylinderical coordinate system such that the curved field lines are parallel to θ direction.
- In the system, the components of velocity and acceleration are given as

$$
\begin{gathered}
\boldsymbol{v}=\dot{r} \boldsymbol{e}_{r}+r \dot{\theta} \boldsymbol{e}_{\theta}+\dot{z} \boldsymbol{k} \\
\boldsymbol{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \boldsymbol{e}_{\theta}+\ddot{z} \boldsymbol{k}
\end{gathered}
$$

- Since field lines are assumed to be parallel to θ direction, therefore

$$
\mathrm{B}=\mathrm{B}_{\theta} \mathrm{e}_{\theta}
$$

Figure is from "Introduction to Plasma Physics and Controlled Fusion" by F. F. Chen.

Equation of motion:

$$
\begin{gathered}
m \frac{d v_{r}}{d t}=-q v_{z} B_{\theta} \quad m \frac{d v_{z}}{d t}=q v_{r} B_{\theta} \\
m \frac{d^{2} r}{d t^{2}}=-q v_{z} B_{\theta}+m r\left(\frac{d \theta}{d t}\right)^{2} \rightarrow m \frac{d^{2} r}{d t^{2}}=-q v_{z} B_{\theta}+F_{c f}
\end{gathered}
$$

For the field line with curvature radius $R_{c}, r=R_{c}$ and we also know that

$$
v_{\theta}=r \frac{d \theta}{d t}=\mathrm{v}_{\|}
$$

As a result,

$$
\mathrm{F}_{\mathrm{ct}}=\left(\mathrm{m} \mathrm{v}_{\|}{ }^{2} / \mathrm{R}_{\mathrm{c}}\right)
$$

Curvature drift

$$
\mathbf{v}_{R}=\frac{1}{q} \frac{\mathbf{F}_{\mathrm{cf}} \times \mathbf{B}}{B^{2}}=\frac{m v_{\|}^{2}}{q B^{2}} \frac{\mathbf{R}_{c} \times \mathbf{B}}{R_{c}^{2}}
$$

Gradient Drift

To understand the gradient drift, we consider the magnetic field $B=B(y) e_{z}$.

Figure shows the presence of gradient in magnetic field in y-direction.

$$
\begin{gathered}
F_{x}=q\left(v_{y} B_{z}\right) \\
F_{y}=-q\left(v_{x} B_{z}\right) \\
F_{z}=0 \\
B_{z}(y)=B_{0}+y \frac{d B_{z}}{d y}+\ldots
\end{gathered}
$$

Expanding B around the origin which is assumed to be guiding center.

$$
\begin{aligned}
& F_{x}=q v_{y}\left(B_{0}+y \frac{d B_{z}}{d y}\right) \\
& F_{y}=-q v_{x}\left(B_{0}+y \frac{d B_{z}}{d y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}=-q v_{\perp} \sin \left(\omega_{c} t\right)\left(B_{0} \pm r_{L} \cos \left(\omega_{c} t\right) \frac{d B_{z}}{d y}\right) \\
& F_{y}=-q v_{\perp} \cos \left(\omega_{c} t\right)\left(B_{0} \pm r_{L} \cos \left(\omega_{c} t\right) \frac{d B_{z}}{d y}\right)
\end{aligned}
$$

We average force over a gyroperiod

$$
\begin{gathered}
\left\langle F_{x}\right\rangle=0, \\
\left\langle F_{y}\right\rangle=-q v_{[}\left[B_{0}\left\langle\cos \left(\omega_{c} t\right)\right\rangle \pm r_{L}\left\langle\cos ^{2}\left(\omega_{c} t\right)\right\rangle \frac{d B_{z}}{d y}\right] \\
=\mp \frac{q v_{1} r_{L}}{2} \frac{d B_{z}}{d y}
\end{gathered}
$$

Gradient Drift Motion

$$
\mathbf{v}_{\mathbf{\nabla} B}= \pm \frac{1}{2} v_{\perp} r_{\mathrm{L}} \frac{\mathbf{B} \times \nabla B}{B^{2}}
$$

Where \pm stands for the sign of the charge.

B out of page

Figure is from "Fundament of Plasma Physics" by Bittencourt.

Thanks!

