MODULE - I INTRODUCTION

Computer data often travels from one computer to another, leaving the safety of its protected physical surroundings. Once the data is out of hand, people with bad intention could modify or forge your data, either for amusement or for their own benefit.

Cryptography can reformat and transform our data, making it safer on its trip between computers. The technology is based on the essentials of secret codes, augmented by modern mathematics that protects our data in powerful ways.

• **Computer Security** - generic name for the collection of tools designed to protect data and to thwart hackers

• Network Security - measures to protect data during their transmission

• **Internet Security** - measures to protect data during their transmission over a collection of interconnected networks

Security Attacks, Services and Mechanisms

To assess the security needs of an organization effectively, the manager responsible for security needs some systematic way of defining the requirements for security and characterization

of approaches to satisfy those requirements. One approach is to consider three aspects of information security:

Security attack – Any action that compromises the security of information owned by an organization.

Security mechanism – A mechanism that is designed to detect, prevent or recover from a security attack.

Security service – A service that enhances the security of the data processing systems and the information transfers of an organization. The services are intended to counter security attacks and

they make use of one or more security mechanisms to provide the service.

Basic Concepts

Cryptography The art or science encompassing the principles and methods of transforming an intelligible message into one that is unintelligible, and then retransforming that message back to its

original form

Plaintext The original intelligible message

Cipher text The transformed message

Cipher An algorithm for transforming an intelligible message into one that is unintelligible by transposition and/or substitution methods

Key Some critical information used by the cipher, known only to the sender& receiver **Encipher** (encode) The process of converting plaintext to cipher text using a cipher and a key **Decipher** (decode) the process of converting cipher text back into plaintext using a cipher and a key

Cryptanalysis The study of principles and methods of transforming an unintelligible message back into an intelligible message *without* knowledge of the key. Also called **code breaking Cryptology** Both cryptography and cryptanalysis

Code An algorithm for transforming an intelligible message into an unintelligible one using a code-book

Cryptography

Cryptographic systems are generally classified along 3 independent dimensions:

Type of operations used for transforming plain text to cipher text

All the encryption algorithms are based on two general principles: **substitution**, in which each element in the plaintext is mapped into another element, and **transposition**, in which elements in the plaintext are rearranged.

The number of keys used

If the sender and receiver uses same key then it is said to be **symmetric key (or)** single key (or) conventional encryption.

If the sender and receiver use different keys then it is said to be **public key encryption**.

The way in which the plain text is processed

A **block cipher** processes the input and block of elements at a time, producing output block for each input block.

A **stream cipher** processes the input elements continuously, producing output element one at a time, as it goes along.

Cryptanalysis

The process of attempting to discover X or K or both is known as cryptanalysis. The strategy used by the cryptanalysis depends on the nature of the encryption scheme and the information available to the cryptanalyst.

There are various types of cryptanalytic attacks based on the amount of information known to the cryptanalyst.

Cipher text only – A copy of cipher text alone is known to the cryptanalyst.

Known plaintext – The cryptanalyst has a copy of the cipher text and the corresponding plaintext.

Chosen plaintext – The cryptanalysts gains temporary access to the encryption machine. They cannot open it to find the key, however; they can encrypt a large number of suitably chosen plaintexts and try to use the resulting cipher texts to deduce the key.

Chosen cipher text – The cryptanalyst obtains temporary access to the decryption machine, uses it to decrypt several string of symbols, and tries to use the results to deduce the key.

STEGANOGRAPHY

A plaintext message may be hidden in any one of the two ways. The methods of steganography conceal the existence of the message, whereas the methods of cryptography render the message unintelligible to outsiders by various transformations of the text.

A simple form of steganography, but one that is time consuming to construct is one in which an arrangement of words or letters within an apparently innocuous text spells out the real message.

e.g., (i) the sequence of first letters of each word of the overall message spells out the real (Hidden) message.

(ii) Subset of the words of the overall message is used to convey the hidden message.

Various other techniques have been used historically, some of them are

Character marking – selected letters of printed or typewritten text are overwritten in pencil.