Mathematical Expectation

MATHEMATICAL EXPECTATION

The expected value of the random variable X or the expectation of the random variable X, denoted by $E(X)$ is defined by

$$
E(X)= \begin{cases}\int x f_{X}(x) d x, & \text { if } x \text { is a cont. r.v. } \\ \sum x p(x), & \text { if } x \text { is a disc. r.v.. }\end{cases}
$$

Ex. What is expected value of the number of points obtained in a single throw with an ordinary dice?

Sol. Here the random variable X is the number of points of the dice which assumes the values $1,2,3,4,5,6$ each with a probability $\frac{1}{6}$

$$
\begin{aligned}
& \qquad \begin{array}{|c|c|c|c|c|c|c|c|}
\hline X=x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline P(X=x) & \frac{1}{6} \\
\hline
\end{array} \\
& =(1+2+3+4+5+6) \times \frac{1}{6}=\frac{21}{6}
\end{aligned}
$$

Ex. Suppose the random variable X takes the values $0,1,2, \ldots$ with probability mass function

$$
p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

Sol. We know that $E(X)=\sum_{x=0}^{\infty} x p(x)=\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}$

$$
=\lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)}}{(x-1)!}=\lambda e^{-\lambda} e^{\lambda}=\lambda
$$

Ex. Suppose the random variable X with probability density function $f(x)=\lambda e^{-\lambda x}, \quad x>0$
Sol. We know that $E(X)=\int_{0}^{\infty} x f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=$

$$
=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x=\lambda \int_{0}^{\infty} x^{(2-1)} e^{-\lambda x} d x=\frac{\lambda}{\lambda^{2}}=\frac{1}{\lambda}
$$

Th. If a and b are constants, then $E(a X+b)=a E(X)+b$

Prof. $E(X)=\sum(a x+b) p(x)=a \sum x p(x)+b \sum p(x)=a E(X)+b$.
Th. The expectation of the sum of two random variable X and Y is equal to the sum of their expectation.

$$
E(X+Y)=E(X)+E(Y)
$$

Prof. $E(X+Y)=\iint(x+y) f(x, y) d x d y$

$$
\begin{aligned}
& =\iint x f(x, y) d x d y+\iint y f(x, y) d x d y \\
& =\int x \int f(x, y) d y d x+\int y \int f(x, y) d x d y \\
& =\int x g(x) d x+\int y h(y) d y=E(X)+E(Y)
\end{aligned}
$$

so, $E(X+Y)=E(X)+E(Y)$.

Th. If X and Y be two independent random variable, then

$$
E(X Y)=E(X) E(Y)
$$

Prof. Since X and Y be two independent random variable, then $f(x, y)=f(x) f(y)$

$$
\begin{aligned}
& E(X Y)=\iint x y f(x, y) d x d y=\iint x y f(x) f(y) d x d y \\
& =\int x f(x) d x \int y f(y) d y=E(X) E(Y)
\end{aligned}
$$

$$
\text { so } E(X Y)=E(X) E(Y)
$$

Expectation of a Linear Combination of Random Variables: Suppose $Y_{1}, Y_{2}, \ldots, Y_{m}$ be any m random variables and if $b_{1}, b_{2}, \ldots, b_{m}$ are any m constants, then

$$
E\left(\sum_{j=1}^{m} b_{j} Y_{j}\right)=\sum_{j=1}^{m} b_{j} E\left(Y_{j}\right)
$$

MATHEMATICAL EXPECTATION of a Function of a Random Variable

The expected value of a function of a random variable denoted by $E(h(X))$ is defined by

$$
E(h(X))= \begin{cases}\int h(x) f_{X}(x) d x, & \text { if } h(x) \text { is a cont. r.v., } \\ \sum h(x) p(x), & \text { if } h(x) \text { is a disc. r.v.. }\end{cases}
$$

VARIANCE

The variance of the random variable X or the variance of the random variable X, denoted by $V(X)$ is defined by

$$
V(X)=\mu_{2}=E(x-\bar{x})^{2}= \begin{cases}\int(x-\bar{x})^{2} f_{X}(x) d x, & \text { if } x \text { is a cont. r.v. } \\ \sum(x-\bar{x})^{2} p(x), & \text { if } x \text { is a disc. r.v.. }\end{cases}
$$

where, $\bar{x}=\mu=E(X)$
Th. $V(X)=E\left(X^{2}\right)-(E(X))^{2}$
Prof. $V(X)=E(X-\bar{X})^{2}=E\left(X^{2}+\bar{X}^{2}-2 \bar{X} X\right)$

$$
=E\left(X^{2}\right)+\bar{X}^{2}-2 \bar{X} E(X)=E\left(X^{2}\right)+\bar{X}^{2}-2 \bar{X} \bar{X}=E\left(X^{2}\right)-\bar{X}^{2}
$$

So, $V(X)=E\left(X^{2}\right)-(E(X))^{2}$
Th. $V(a X+b)=a^{2} V(X)$
Prof. $Y=a X+b$ then $E(Y)=a E(X)+b$
$\Rightarrow Y-E(Y)=a(X-E(X))$,
Squaring and taking expectation of both sides, we get

$$
\begin{aligned}
& E(Y-E(Y))^{2}=a^{2} E(X-E(X))^{2} \Rightarrow V(Y)=a^{2} V(X) \\
& \Rightarrow V(a X+b)=a^{2} V(X)
\end{aligned}
$$

Th. $V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)$
Prof. $E(X+Y)=E(X)+E(Y)$ then

$$
\begin{aligned}
& \Rightarrow V(X+Y)=E[(X+Y)-E(X+Y)]^{2} \\
& \Rightarrow E[(X+Y)-E(X)-E(Y)]^{2} \\
& \Rightarrow E[(X-E(X))+(Y-E(Y))]^{2} \\
& \Rightarrow E\left[(X-E(X))^{2}+(Y-E(Y))^{2}+2(X-E(X))(Y-E(Y))\right]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow E(X & -E(X))^{2}+E(Y-E(Y))^{2}+2 E((X-E(X))(Y-E(Y))) \\
& =V(X)+V(Y)+2 \operatorname{Cov}(X, Y)
\end{aligned}
$$

So, $V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)$
Th. $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
Prof. $\operatorname{Cov}(X, Y)=E\{(X-E(X))(Y-E(Y))\}$
$\Rightarrow E\{X Y-X E(Y)-Y E(X)+E(X) E(Y)\}$,
$\Rightarrow E(X Y)-E(X) E(Y)-E(Y) E(X)+E(X) E(Y)$,
$\Rightarrow E(X Y)-E(X) E(Y)$,
So, $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
If X and Y are two independent variates the $E(X Y)=E(X) E(Y)$
$\Rightarrow \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$,
$\Rightarrow \operatorname{Cov}(X, Y)=E(X) E(Y)-E(X) E(Y) \Rightarrow \operatorname{Cov}(X, Y)=0$.
So we can say that if X and Y are two independent variates then $\operatorname{Cov}(X, Y)=0$

Assignment

1. Find the Mean and Variance of the discrete random variable X that has the probability distribution
$P(X=x)=2\left(\frac{1}{3}\right)^{x} ; \quad x=1,2,3, \ldots$
2. Compute the Mean and Variance of the distribution defined by $f(x)=x e^{-x} ; x>0$.
3. Find mean and variance for the p.d.f. $f(x)=c e^{-x} ; x>0$ where c is an unknown constant. Find c also.
4. Find the Mean and Variance of the discrete random variable X that has the probability distribution
$P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!} ; \quad x=0,1,2,3, \ldots$.

References

- S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Sons.
- A. Kumar, A. Chaudhary, Probability Distribution \& Theory of Attributes, Krishna's Educational Publishers.
- A. Kumar, A. Chaudhary, Probability Distribution \& Numerical Analysis, Krishna's Educational Publishers.
- K.S. Negi, Biostatistics, Aitbs Publishers.
- V.B. Rastogi, Fundamentals of Biostatistics, ANE Books.

