M.S c Mathematics -SEM 3 Functional Analysis- CC-11 Unit 3

E-content 3-Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Projection on Banach spaces

A projection on a Banach space B is an idempotent operator E on B

In other words E is a projection on B if
(i) $\quad E^{\mathbf{2}}=E^{\text {i.e E is a projection on } \mathrm{B} \text { in the algebraic sense }}$
(ii) \boldsymbol{E} is continuous.

Theorem

Let P be a projection on a Banach space B and let M and n be its range and null space respectively. Then M and N are closed linear manifolds (subspace) of B such that $B=M \oplus N$.

Proof
By definition
\mathbf{P} is a projection on a Banach space
(i) $\quad \mathrm{P}$ is a projection in the algebraic sense and
(ii) P is continuous But (i) implies that $\mathrm{B}=\mathrm{M} \oplus \mathrm{N}$ where M and N are range and null spaces of P respectively. Now we use to prove that M and N are closed subspaces of B. By definition of a null space

$$
N=\{x: P(x)=0\}=P^{-1}(\{0\})
$$

 closed subspace of B.

We know that in a metric space ,every singleton set is closed.

$$
M=\{x: P(x)=x\}=\{x:(I-P)(x)=0
$$

i.e M is the null space of I-P.

But since the identity map I is always continuous
$I-P$ is also continuous. Hence so its null space M must be closed.

