M.S c Mathematics -SEM 3 Differential Geometry

CC-13 Unit 1

E-content - Pro(Dr)L N RAI

HOD, PG Department of Mathematics, Patna University, Patna.

Define cylindrical helix and prove that necessary and sufficient condition for a curve to be helix is that its curvature and torsion are in a constant ratio.

Cylindrical Helix

A curve lies on a cylinder cuts the generators at a constant angle is called cylindrical helix.

Thus, the tangent to a cylindrical helix makes a constant angle (α say with a fixed line called the axis of the helix.

Necessary and sufficient condition for a curve to be helix is that its curvature and torsion are in a constant ratio $\frac{K}{\zeta}=$ constant .

Let \widehat{a} denotes the unit vector in the direction of the axis.By the definition of helix, we have

$\widehat{\boldsymbol{t}} \cdot \widehat{\boldsymbol{a}}=\cos \alpha=$ constant
Differentiating this w.r.t s we have
$\hat{t}^{\prime} \cdot \widehat{a}=0 \Rightarrow K(\widehat{n} . \widehat{a})=0 \Rightarrow \widehat{n} \cdot \widehat{a}=0$
Here , $\boldsymbol{k} \neq \mathbf{0}$.
Hence $\widehat{\boldsymbol{n}} . \widehat{a}=0$. This shows that \widehat{a} is
orthogonal to \widehat{n} and hence \widehat{a} must lie in the rectifying plane (i.e the plane containing $\hat{\boldsymbol{t}}$ and \widehat{b}.

If $\overrightarrow{\boldsymbol{P B}}$ represents the unit vector \widehat{a} then $|\overrightarrow{P B}|=1$

By Triangle's law of vectors, we have

$$
\overrightarrow{P B}=\overrightarrow{P A}+\overrightarrow{A B}
$$

$\widehat{a}=\cos \alpha \hat{t}+\sin \alpha \widehat{b}$
Differentiating w.r.t s, we get

$$
0=\cos \alpha \hat{t}^{\prime}+\sin \alpha \widehat{b}^{\prime}
$$

$0=(\cos \alpha K-\sin \alpha \zeta) \widehat{n}$
$\Rightarrow \cos \alpha k-\sin \alpha \zeta=0$

$$
\tan \alpha=\frac{K}{\zeta}
$$

Sufficient condition

Let

$\frac{K}{\zeta}=$ constant $=\tan$ (let)
Then,

$$
K \cos \alpha-\zeta \sin \alpha=0
$$

$(K \cos \alpha-\zeta \sin \alpha) \widehat{n}=0$
$K \widehat{n} \cos \alpha+(-\zeta \widehat{n}) \sin \alpha=0$
$\Rightarrow t^{\prime} \cos \alpha+\widehat{b^{\prime}}+\widehat{b}^{\prime} \sin \alpha=0$
$\frac{d}{d s}\left(t^{\prime} \cos \alpha+\widehat{b^{\prime}}+\widehat{b}^{\prime} \sin \alpha\right)=0$
$t^{\prime} \cos \alpha+\widehat{b^{\prime}}+\widehat{b}^{\prime} \sin \alpha=\widehat{a}($ say $)$
$\hat{t} .\left(t^{\prime} \cos \alpha+\widehat{b^{\prime}}+\widehat{b}^{\prime} \sin \alpha\right)=\hat{t} \widehat{a}$
$\operatorname{Cos} \alpha=\hat{\boldsymbol{t}} \widehat{\boldsymbol{a}}$

Hence, the curve makes a constant angle with a fixed direction. Hence, it is a helix.

