e-content (lecture-19)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Normal operators.

Normal operator : An operator T on a Hilbert space H is said to be normal if it commutes with its adjoint

i.e $TT^* = T^*T$.

Now if T is self-adjoint operator then e $T = T^*$

So $TT^* = T^*T$ hence T is normal.

Thus every self-adjoint operator is normal.

Theorem: An operator T on a Hilbert space H is normal

$$\Leftrightarrow ||T^*x|| = ||Tx|| \quad \forall x \in H.$$

Proof: We have

$$T$$
 is normal $\Leftrightarrow TT^* = T^*T$

$$\Leftrightarrow TT^* - T^*T = O$$

$$\Leftrightarrow ((TT^* - T^*T)x, x) = 0 \quad \forall x \in H$$

$$\Leftrightarrow (TT^*x - T^*Tx, x) = 0 \quad \forall x \in H$$

$$\Leftrightarrow (TT^*x, x) - (T^*Tx, x) = 0 \quad \forall x \in H$$

$$\Leftrightarrow (TT^*x, x) = (T^*Tx, x) \quad \forall x \in H$$

$$\Leftrightarrow (T^*x, T^*x) = (Tx, Tx) \quad \forall x \in H$$

$$\Leftrightarrow ||T^*x|| = ||Tx|| \quad \forall x \in H.$$

Theorem: An operator T on a Hilbert space H can be uniquely expressed as $T = T_1 + iT_2$

where T_1 and T_2 are self-adjoint operators on H.

Proof: Let $T_1 = \frac{T+T^*}{2}$ and $T_2 = \frac{T-T^*}{2i}$ Then $T = T_1 + iT_2$. Now $T_1^* = [\frac{T+T^*}{2}]^* = \frac{1}{2}[T+T^*]^*$ $= \frac{1}{2}[T^* + T^{**}]$ $= \frac{1}{2}[T^* + T] = T_1$.

Hence T_1 is self-adjoint operators on H.

Now
$$T_2^* = \left[\frac{T-T^*}{2i}\right]^* = -\frac{1}{2i} [T-T^*]^*$$

$$= -\frac{1}{2i} [T^* - T^{**}]$$
$$= -\frac{1}{2i} [T^* - T]$$
$$= \frac{1}{2i} [T - T^*] = T_2.$$

Hence T_2 is self-adjoint operators on H.

We have to show that the repressentation is unique . Let $T = U_1 + iU_2$ be another representation of T. where U_1 and U_2 are self-adjoint operators on H. We have

$$T^* = [U_1 + iU_2]^* = U_1^* - iU_2^* = U_1 - iU_2$$

So $T + T^* = (U_1 + iU_2) + (U_1 - iU_2) = 2U_1$
 $U_1 = \frac{T + T^*}{2} = T_1.$
Also $T - T^* = (U_1 + iU_2) - (U_1 - iU_2) = 2iU_2$
 $U_2 = \frac{T - T^*}{2i} = T_2.$ Hence representation of T is unique.