e-content (lecture-19)

by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Normal operators .
Normal operator : An operator T on a Hilbert space H is said to be normal if it commutes with its adjoint

$$
\text { i.e } T T^{*}=T^{*} T
$$

Now if T is self-adjoint operator then e $T=T^{*}$

$$
\text { So } T T^{*}=T^{*} T \text { hence } T \text { is normal. }
$$

Thus every self-adjoint operator is normal.
Theorem: An operator T on a Hilbert space H is normal

$$
\Leftrightarrow\left\|T^{*} x\right\|=\|T x\| \quad \forall x \in H
$$

Proof: We have

$$
T \text { is normal } \Leftrightarrow T T^{*}=T^{*} T
$$

$$
\begin{aligned}
& \Leftrightarrow T T^{*}-T^{*} T=0 \\
& \Leftrightarrow\left(\left(T T^{*}-T^{*} T\right) x, x\right)=0 \forall x \in H \\
& \Leftrightarrow\left(T T^{*} x-T^{*} T x, x\right)=0 \forall x \in H \\
& \Leftrightarrow\left(T T^{*} x, x\right)-\left(T^{*} T x, x\right)=0 \forall x \in H \\
& \Leftrightarrow\left(T T^{*} x, x\right)=\left(T^{*} T x, x\right) \forall x \in H \\
& \Leftrightarrow\left(T^{*} x, T^{*} x\right)=(T x, T x) \forall x \in H \\
& \Leftrightarrow\left\|T^{*} x\right\|=\|T x\| \quad \forall x \in H .
\end{aligned}
$$

Theorem: An operator T on a Hilbert space H can be uniquely expressed as $T=T_{1}+i T_{2}$
where T_{1} and T_{2} are self-adjoint operators on H.
Proof: Let $T_{1}=\frac{T+T^{*}}{2}$ and $T_{2}=\frac{T-T^{*}}{2 i}$
Then $T=T_{1}+i T_{2}$.
Now $T_{1}^{*}=\left[\frac{T+T^{*}}{2}\right]^{*}=\frac{1}{2}\left[T+T^{*}\right]^{*}$

$$
\begin{aligned}
& =\frac{1}{2}\left[T^{*}+T^{* *}\right] \\
& =\frac{1}{2}\left[T^{*}+T\right]=T_{1} .
\end{aligned}
$$

Hence T_{1} is self-adjoint operators on H.

Now $T_{2}^{*}=\left[\frac{T-T^{*}}{2 i}\right]^{*}=-\frac{1}{2 i}\left[T-T^{*}\right]^{*}$

$$
\begin{aligned}
& =-\frac{1}{2 i}\left[T^{*}-T^{* *}\right] \\
& =-\frac{1}{2 i}\left[T^{*}-T\right] \\
& =\frac{1}{2 i}\left[T-T^{*}\right]=T_{2}
\end{aligned}
$$

Hence T_{2} is self-adjoint operators on H.
We have to show that the repressentation is unique .
Let $T=U_{1}+i U_{2}$ be another representation of T.
where U_{1} and U_{2} are self-adjoint operators on H.
We have

$$
\begin{aligned}
& \quad T^{*}=\left[U_{1}+i U_{2}\right]^{*}=U_{1}^{*}-i U_{2}^{*}=U_{1}-i U_{2} \\
& \text { So } T+T^{*}=\left(U_{1}+i U_{2}\right)+\left(U_{1}-i U_{2}\right)=2 U_{1} \\
& U_{1}=\frac{T+T^{*}}{2}=T_{1} .
\end{aligned}
$$

$$
\text { Also } T-T^{*}=\left(U_{1}+i U_{2}\right)-\left(U_{1}-i U_{2}\right)=2 i U_{2}
$$

$$
U_{2}=\frac{T-T^{*}}{2 i}=T_{2} . \text { Hence representation of } T \text { is unique. }
$$

END.

