Complex Potential for Irrotational Motion in Two-dimensions(13)

Binod Kumar*
M.Sc. Mathematics Semester: III
Paper: Fluid Dynamics XII (MAT CC-12)
Patna University,Patna

October 29, 2020

1 Irrotational Motion in Two-dimensions

Let two-dimensional motion of fluid of velocity $\boldsymbol{q}=(u, v)$ be irrotational, then there exists velocity ϕ such that

$$
\begin{equation*}
u=-\frac{\partial \phi}{\partial x} \quad \text { and } \quad v=-\frac{\partial \phi}{\partial y} \tag{1}
\end{equation*}
$$

Here, motion is two dimensional flow, so \exists a stream function ψ such that

$$
\begin{equation*}
u=-\frac{\partial \psi}{\partial y} \quad \text { and } \quad v=\frac{\partial \psi}{\partial x} \tag{2}
\end{equation*}
$$

From (1) and (2), we have

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \text { and } \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{3}
\end{equation*}
$$

Equation (3) represent the Cauchy-Riemann equations for the function $w=f(z)=$ $\phi(x, y)+\iota \psi(x, y)$, where $x, y, \phi, \psi \in \mathbb{R}$ then $w=\phi+\iota \psi$ is analytic.

Remark 1. Equation (3) can be written as

$$
\begin{equation*}
\frac{\partial \phi}{\partial x} \frac{\partial \psi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial \psi}{\partial y}=0 \tag{4}
\end{equation*}
$$

showing that the families of curves given by $\phi=$ constant and $\psi=$ constant intersect orthogonally.
i.e.,

$$
d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y=0 \quad \Longrightarrow \quad\left(\frac{d y}{d x}\right)_{\phi}=-\frac{\frac{\partial \phi}{\partial x}}{\frac{\partial \phi}{\partial y}}
$$

[^0]and
$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y=0 \quad \Longrightarrow \quad\left(\frac{d y}{d x}\right)_{\psi}=-\frac{\frac{\partial \psi}{\partial x}}{\frac{\partial \psi}{\partial y}}
$$

For orthogonal

$$
\left(\frac{d y}{d x}\right)_{\phi}\left(\frac{d y}{d x}\right)_{\psi}=-1
$$

which is represent equation (4)
Remark 2. The potential and stream function satisfied Laplace equation.
Differentiating equation (3), we get

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \psi}{\partial x \partial y} \quad \text { and } \quad \frac{\partial^{2} \phi}{\partial y^{2}}=-\frac{\partial^{2} \psi}{\partial y \partial x} \tag{5}
\end{equation*}
$$

Since $u=-\frac{\partial \psi}{\partial y}$ and $v=\frac{\partial \psi}{\partial x}$. Then

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=0 \quad \Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x \partial y}=\frac{\partial^{2} \psi}{\partial y \partial x}
$$

Then equation (5) gives

$$
\begin{array}{r}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \psi}{\partial x \partial y}+\frac{\partial^{2} \psi}{\partial y \partial x}=0 \\
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
\end{array}
$$

Similarly for function ψ, we get

$$
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0
$$

1.1 Complex Potential

Let $w=f(z)=\phi+\iota \psi$ be taken as a function of $x+\iota y(=z)$ is said to be complex potential. Which is analytic for this

$$
\begin{equation*}
\phi+\iota \psi=f(x+\iota y) \tag{6}
\end{equation*}
$$

Differentiating w.r.t. x and y respectively, we get

$$
\begin{array}{r}
\frac{\partial \phi}{\partial x}+\iota \frac{\partial \phi}{\partial x}=f^{\prime}(x+\iota y) \\
\frac{\partial \phi}{\partial y}+\iota \frac{\partial \phi}{\partial y}=\iota f^{\prime}(x+\iota y) \\
\Longrightarrow \quad \frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \text { and } \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{7}
\end{array}
$$

1.1.1 Cauchy-Riemann equation in polar form

Let (r, θ) be coordinate in polar form such that $r=|z|=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$, then $z=r e^{\iota \theta}$, then complex potential

$$
\begin{equation*}
\phi(r, \theta)+\iota \psi(r, \theta)=f\left(r e^{\iota \theta}\right) \tag{8}
\end{equation*}
$$

Differentiating w.r.t. r and θ respectively, we get

$$
\begin{gather*}
\frac{\partial \phi}{\partial r}+\iota \frac{\partial \psi}{\partial r}=e^{\iota \theta} f^{\prime}\left(r e^{\iota \theta}\right) \\
\frac{\partial \phi}{\partial \theta}+\iota \frac{\partial \psi}{\partial \theta}=\iota r e^{\iota \theta} f^{\prime}\left(r e^{\iota \theta}\right) \\
\Longrightarrow \quad \frac{\partial \phi}{\partial \theta}+\iota \frac{\partial \psi}{\partial \theta}=\iota r\left(\frac{\partial \phi}{\partial r}+\iota \frac{\partial \psi}{\partial r}\right) \\
\therefore \quad \tag{9}\\
\frac{\partial \phi}{\partial r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \text { and } \frac{\partial \phi}{\partial \theta}=r \frac{\partial \psi}{\partial r}
\end{gather*}
$$

is Cauchy-Riemann (C-R) equation in polar form.

1.1.2 Magnitude of velocity

Let $w=f(z)$ be the complex potential. Then

$$
\begin{equation*}
w=\phi+\iota \psi \quad \text { and } \quad z=x+\iota y \tag{10}
\end{equation*}
$$

Also

$$
\begin{equation*}
\partial \phi / \partial x=\partial \psi / \partial y \quad \text { and } \quad \partial \phi / \partial y=-\partial \psi / \partial x \tag{11}
\end{equation*}
$$

For two- dimensional irrotational motion, we have

$$
\begin{equation*}
u=-\partial \phi / \partial x \quad \text { and } \quad v=-\partial \phi / \partial y \tag{12}
\end{equation*}
$$

From equation (10)

$$
\frac{d w}{d z} \frac{\partial z}{\partial x}=\frac{\partial \phi}{\partial x}+\iota \frac{\partial \psi}{\partial x} \quad \text { and } \quad \frac{\partial z}{\partial x}=1
$$

Using equation (11)

$$
\begin{gathered}
\frac{d w}{d z}=\frac{\partial \phi}{\partial x}-\iota \frac{\partial \phi}{\partial x} \\
\frac{d w}{d z}=-u+\iota v
\end{gathered}
$$

which is called the complex velocity. And magnitude of complex velocity is

$$
\left|\frac{d w}{d z}\right|=\sqrt{\frac{\partial \phi^{2}}{\partial x}+\frac{\partial \phi^{2}}{\partial x}}=\left(u^{2}+v^{2}\right)^{1 / 2}=q
$$

All the best...
Next in 14th Econtent

[^0]: *Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

