e-content (lecture-18)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Positive Operators

Definition: A self-adjoint operator T on a Hilbert space

H is said to be positive if $(Tx, x) \ge 0 \quad \forall x \in H$.

Example: Identity (I) and zero(O) operators are both positive operator .

we know that *I* and *O* are self-adjoint operators.

Also we have $\forall x \in H$

$$(Ix, x) = (x, x) = ||x||^2 \ge 0$$
 and $(Ox, x) = (0, x) = 0$.

Hence *I* and *O* are positive operators.

Theorem: If T is a operator positive on a Hilbert space H, then I+T is non-singular.

Proof: To prove I + T is non-singular we have to show that I + T is one- one onto as a mapping of H to itself.

I + T is one- one: Let $x, y \in H$ such that

$$(I+T)x = (I+T)y$$

$$\Rightarrow (I+T)x - (I+T)y = 0$$

$$\Rightarrow (I+T)(x-y) = 0$$

$$\Rightarrow (I+T)(\alpha) = 0 \quad \text{[where } \alpha = x-y\text{]}$$

$$\Rightarrow I\alpha + T\alpha = 0$$

$$\Rightarrow T\alpha = -\alpha$$

So
$$(T\alpha, \alpha) = (-\alpha, \alpha) = -\|\alpha\|^2$$

Now *T* is a operator positive

So
$$(T\alpha, \alpha) \ge 0$$

$$\Rightarrow -\|\alpha\|^2 \ge 0$$

$$\Rightarrow \|\alpha\|^2 \le 0$$

$$\Rightarrow \|\alpha\|^2 = 0$$

$$\Rightarrow \alpha = 0 \Rightarrow x - y = 0 \Rightarrow x = y.$$

Hence I + T is one- one.

To prove I + T is onto.

Let M be the range of I + T.

We show that M = H. First we show that M is closed.

For any vector $x \in H$ we have

$$||(I+T)x||^{2} = ||(Ix+Tx)||^{2}$$

$$= ||x+Tx||^{2}$$

$$= (x+Tx,x+Tx)$$

$$= (x,x) + (Tx,x) + (x,Tx) + (Tx,Tx)$$

$$= ||x||^{2} + ||Tx||^{2} + (Tx,x) + \overline{(Tx,x)}$$

$$= ||x||^{2} + ||Tx||^{2} + 2(Tx,x) \text{ [as } (Tx,x) \text{ is real]}$$

$$\geq ||x||^{2}$$

Thus $||x||^2 \le ||(I+T)x||^2$

Hence $||x|| \le ||(I+T)x|| \quad \forall \ x \in H$.

Now let $((I + T) x_n)$ be a chauchy sequence in M.

Then we have for all $m, n \in N$

$$||x_m - x_n|| \le ||(I + T)(x_m - x_n)||$$

$$\leq \|(I+T)(x_m) - (I+T)x_n\| \to 0$$

 \Rightarrow $||x_m - x_n|| \to 0$ so (x_n) be a chauchy sequence in HHhence there exists $x \in H$ such that $x_n \to x$.

$$\lim_{n \to \infty} [(I+T) x_n] = (I+T) \left(\lim_{n \to \infty} x_n \right)$$
$$= (I+T)x \in M$$

So *M* is complete therefore it is closed .

Now suppose that $M \neq H$ then M is a proper closed subspace of H hence there exists a non zero vector

 x_0 in H such that x_0 is orthogonal to M.

Since
$$(I+T)x_0 \in M$$

Hence
$$0 = ((I + T)x_0, x_0) = (Ix_0 + T x_0, x_0)$$

 $= (x_0 + T x_0, x_0)$
 $= (x_0, x_0) + (T x_0, x_0)$
 $\Rightarrow -||x_0||^2 = (T x_0, x_0) \ge 0$
 $\Rightarrow ||x_0||^2 \le 0$
 $\Rightarrow ||x_0||^2 = 0$
 $\Rightarrow ||x_0|| = 0$

$$\Rightarrow x_0 = 0$$

This is a contradiction hence we must have M=H. Therefore I+T is onto.

END.