e-content (lecture-18)

by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Positive Operators
Definition: A self-adjoint operator T on a Hilbert space
H is said to be positive if $(T x, x) \geq 0 \quad \forall x \in H$.
Example: Identity (I) and zero(0) operators are both positive operator .
we know that I and O are self-adjoint operators.
Also we have $\forall x \in H$

$$
\begin{aligned}
& (I x, x)=(x, x)=\|x\|^{2} \geq 0 \quad \text { and } \\
& (O x, x)=(0, x)=0 .
\end{aligned}
$$

Hence I and O are positive operators.

Theorem: If T is a operator positive on a Hilbert space H,then $I+T$ is non-singular.

Proof : To prove $I+T$ is non-singular we have to show that $I+T$ is one- one onto as a mapping of H to itself. $I+T$ is one- one: Let $x, y \in H$ such that

$$
\begin{aligned}
& (I+T) x=(I+T) y \\
\Rightarrow & (I+T) x-(I+T) y=0 \\
\Rightarrow & (I+T)(x-y)=0 \\
\Rightarrow & (I+T)(\alpha)=0 \quad[\text { where } \alpha=x-y] \\
\Rightarrow & I \alpha+T \alpha=0 \\
\Rightarrow & T \alpha=-\alpha
\end{aligned}
$$

So $(T \alpha, \alpha)=(-\alpha, \alpha)=-\|\alpha\|^{2}$
Now T is a operator positive
So $\quad(T \alpha, \alpha) \geq 0$

$$
\Rightarrow-\|\alpha\|^{2} \geq 0
$$

$$
\Rightarrow\|\alpha\|^{2} \leq 0
$$

$$
\Rightarrow\|\alpha\|^{2}=0
$$

$$
\Rightarrow \alpha=0 \Rightarrow x-y=0 \Rightarrow x=y
$$

Hence $I+T$ is one- one.
To prove $I+T$ is onto.
Let M be the range of $I+T$.
We show that $M=H$. First we show that M is closed.
For any vector $x \in H$ we have

$$
\begin{aligned}
& \|(I+T) x\|^{2}=\|(I x+T x)\|^{2} \\
& \quad=\|x+T x\|^{2} \\
& =(x+T x, x+T x) \\
& =(x, x)+(T x, x)+(x, T x)+(T x, T x) \\
& =\|x\|^{2}+\|T x\|^{2}+(T x, x)+\overline{(T x, x)} \\
& =\|x\|^{2}+\|T x\|^{2}+2(T x, x)[\text { as }(T x, x) \text { is real] } \\
& \geq\|x\|^{2}
\end{aligned}
$$

Thus $\|x\|^{2} \leq\|(I+T) x\|^{2}$
Hence $\|x\| \leq\|(I+T) x\| \quad \forall x \in H$.
Now let $\left((I+T) x_{n}\right)$ be a chauchy sequence in M.
Then we have for all $m, n \in N$

$$
\left\|x_{m}-x_{n}\right\| \leq\left\|(I+T)\left(x_{m}-x_{n}\right)\right\|
$$

$$
\left.\leq \|(I+T)\left(x_{m}\right)-(I+T) x_{n}\right) \| \rightarrow 0
$$

$\Rightarrow\left\|x_{m}-x_{n}\right\| \rightarrow 0$ so $\left(x_{n}\right)$ be a chauchy sequence in H Hhence there exists $x \in H$ such that $x_{n} \rightarrow x$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[(I+T) x_{n}\right] & =(I+T)\left(\lim _{n \rightarrow \infty} x_{n}\right) \\
& =(I+T) x \in M
\end{aligned}
$$

So M is complete therefore it is closed .
Now suppose that $M \neq H$ then M is a proper closed subspace of H hence there exists a non zero vector x_{0} in H such that x_{0} is orthogonal to M.

Since $(I+T) x_{0} \in M$

$$
\begin{aligned}
\text { Hence } 0= & \left((I+T) x_{0}, x_{0}\right)=\left(I x_{0}+T x_{0}, x_{0}\right) \\
& =\left(x_{0}+T x_{0}, x_{0}\right) \\
& =\left(x_{0}, x_{0}\right)+\left(T x_{0}, x_{0}\right) \\
& \Rightarrow-\left\|x_{0}\right\|^{2}=\left(T x_{0}, x_{0}\right) \geq 0 \\
& \Rightarrow\left\|x_{0}\right\|^{2} \leq 0 \\
& \Rightarrow\left\|x_{0}\right\|^{2}=0 \\
& \Rightarrow\left\|x_{0}\right\|=0
\end{aligned}
$$

$$
\Rightarrow x_{0}=0
$$

This is a contradiction hence we must have $M=H$.

Therefore $I+T$ is onto.

END.

