M.S c Mathematics – SEM 3 Differential Geometry

CC-13 Unit 1

E-content – Pro(Dr)L N RAI

HOD, PG Department of Mathematics, Patna University, Patna.

Topic- Serret Frenet formula and find its expression for $\frac{d\hat{t}}{ds}$, $\frac{d\hat{b}}{ds}$, $\frac{d\hat{n}}{ds}$

Solution

The following set of three relations involving space derivatives of the fundamental unit vectors $\hat{t}'\,\hat{n}$, \hat{b} are known as serret Frenet formula

(i)
$$\frac{d\hat{t}}{ds} = k\hat{\eta}$$

(ii)
$$\frac{db}{ds} = -\zeta \widehat{\eta}$$

(iii)
$$\frac{dn}{ds} = \zeta \hat{b} - K \hat{t}$$

Proof of (i)

We take $\hat{t} = \vec{r'}^2$ is the unit tangent vector to curve at the point P. Since , \hat{t} is of constant magnitude and it is perpendicular to its derivative $\hat{t'}$. $|\hat{t}| = \vec{r'^2} = 1 \Rightarrow \hat{r'} \hat{r'} = 1$ Differentiating we get $\hat{r'} \cdot \hat{r''} = 0$

 \hat{t} . $\hat{t}'=0$

Also , the vector $\hat{t} = \hat{r}^{''}$ lies in the oscillating plane perpendicular to \hat{t} implies that $\hat{r}^{''}$ is collinear with \hat{n} . Also

 $|\vec{r}''| = k$ so that we have $\vec{r}'' = \mp k \hat{n}$. We choose the direction of \hat{n} such that curvature k is always positive i.e. we take $\vec{r}'' = k \hat{n}$ or

$$rac{d\widehat{t}}{ds} = k\widehat{\eta}$$

Proof of (ii)

We have \widehat{t} . $\widehat{b}=0$

Differentiating w.r t 's' ,we get \widehat{t} . $\widehat{b}=0$

Further,

 $\hat{b}.\hat{b} = 1$ $2\hat{b}.\hat{b} = 0$ Hence \hat{b}' is perpendicular to \hat{b} . Thus \hat{b}' is collinear with \hat{n}'

Thus,

 $\frac{d\hat{b}}{ds} = \mp \zeta \hat{\eta}$ Since, \hat{b} has the opposite direction to \hat{n} . So, negative sign is taken i.e $\hat{b}' = -\zeta \hat{\eta}$ $\frac{d\hat{b}}{ds} = \mp \zeta \hat{\eta}$ Proof of (iii) We know that $\hat{b} \ge \hat{t} = n$ Differentiating w.r.t's', we get $d\hat{n} = d\hat{b} \ge \hat{t} \ge \hat{h} \ge d\hat{t}$

$$\frac{dn}{ds} = \frac{db}{ds} \mathbf{x} \hat{t} + \hat{b} \mathbf{x} \frac{dt}{ds}$$
$$= \frac{d\hat{b}}{ds} \mathbf{x} \hat{t} + \hat{b} \mathbf{x} (\mathbf{k}\hat{n}) = (\zeta \hat{\eta}) \mathbf{x} \hat{t} + \hat{b} \mathbf{x} (\mathbf{k}\hat{n})$$

$$= -\zeta(\widehat{n} \times \widehat{t}) + k(\widehat{b} \times \widehat{n})$$
$$= -\zeta(-\widehat{b}) + k(-\widehat{t})$$
$$= \zeta\widehat{b} - k\widehat{t}$$

Type equation here.