M.S c Mathematics -SEM 3 Differential Geometry

CC-13 Unit 1

E-content - Pro(Dr)L N RAI

HOD, PG Department of Mathematics, Patna University, Patna.

Topic- Serret Frenet formula and find its expression for $\frac{d \hat{t}}{d s}, \frac{d \widehat{b}}{d s}, \frac{d \widehat{n}}{d s}$

Solution

The following set of three relations involving space derivatives of the fundamental unit vectors $\hat{\boldsymbol{t}}^{\prime} \widehat{\boldsymbol{n}}, \widehat{\boldsymbol{b}}$ are known as serret Frenet formula
(i) $\frac{d \hat{t}}{d s}=k \widehat{\eta}$
(ii) $\frac{d \widehat{b}}{d s}=-\zeta \hat{\eta}$
(iii) $\frac{d n}{d s}=\zeta \widehat{b}-K \hat{t}$

Proof of (i)
We take $\hat{\boldsymbol{t}}=\boldsymbol{\mu}^{\prime 2}$ is the unit tangent vector to curve at the point P. Since, \hat{t} is of
constant magnitude and it is perpendicular to its derivative $\widehat{\boldsymbol{t}^{\prime}}$.
$|\hat{\boldsymbol{t}}|={\overrightarrow{\boldsymbol{r}^{\prime}}}^{2}=1 \Rightarrow \widehat{\boldsymbol{r}^{\prime} \boldsymbol{r}^{\prime}}=1$
Differentiating we get

$$
\widehat{\boldsymbol{r}^{\prime}} \cdot \widehat{\boldsymbol{r}^{\prime \prime}}=\mathbf{0}
$$

$\hat{t} . \hat{t}^{\prime}=0$
Also , the vector $\hat{\boldsymbol{t}}=\hat{\boldsymbol{r}}^{\prime \prime}$ lies in the oscillating plane perpendicular to $\hat{\boldsymbol{t}}$ implies that $\hat{\boldsymbol{r}}^{\prime \prime}$ is collinear with $\widehat{\boldsymbol{n}}$.
Also
$\left|\overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|=\boldsymbol{k}$ so that we have $\overrightarrow{\boldsymbol{r}}^{\prime \prime}=\bar{\mp} \boldsymbol{k} \widehat{\boldsymbol{n}}$.
We choose the direction of \widehat{n} such that curvature k is always positive i.e. we take $\overrightarrow{\boldsymbol{r}}^{\prime \prime}=\boldsymbol{k} \widehat{\boldsymbol{n}}$ or

$$
\frac{d \hat{t}}{d s}=k \hat{\eta}
$$

Proof of (ii)

We have $\hat{\boldsymbol{t}} . \widehat{\boldsymbol{b}}=\mathbf{0}$
Differentiating w.rt 's', we get $\hat{\boldsymbol{t}} \widehat{\boldsymbol{b}}=\mathbf{0}$

Further,

$$
\widehat{b} \cdot \widehat{b}=1
$$

$2 \widehat{b} . \widehat{b}=0$
Hence \widehat{b} is perpendicular to \widehat{b}.
Thus $\widehat{\boldsymbol{b}}^{\prime}$ is collinear with $\widehat{\boldsymbol{n}}$.
Thus,

$$
\frac{d \widehat{b}}{d s}=\mp \zeta \widehat{\eta}
$$

Since , \widehat{b} has the opposite direction to \widehat{n}.
$S o$, negative sign is taken i.e $\widehat{b}^{\prime}=-\zeta \widehat{\eta}$

$$
\frac{d \widehat{b}}{d s}=\mp \zeta \widehat{\eta}
$$

Proof of (iii)
We know that $\widehat{b} \times \hat{t}=n$
Differentiating w.r.t's', we get $\frac{d \widehat{n}}{d s}=\frac{d \widehat{b}}{d s} \times \hat{t}+\widehat{b} \times \frac{d \hat{t}}{d s}$
$=\frac{d \widehat{b}}{d s} \times \hat{t}+\widehat{b} \times(\mathrm{k} \widehat{n})=(\zeta \widehat{\eta}) \times \hat{t}+\widehat{b} \times(\mathrm{k} \widehat{n})$

$$
\begin{aligned}
& =-\zeta(\widehat{n} \times \hat{t})+\mathrm{k}(\widehat{b} \times \widehat{n}) \\
& =-\zeta(-\widehat{b})+\mathrm{k}(-\hat{t}) \\
& =\zeta \widehat{b}-\mathrm{k} \hat{t}
\end{aligned}
$$

Type equation here.

