e-content (lecture-16)

by

DR ABHAY KUMAR (Guest Faculty) P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-4 (Functional Analysis)

Topic: Theorems on self –adjoint operators.

Theorem: The set S of all self adjoint operators in B(H) is

a closed real linear subspace of B(H) and therefore

a real Banach space which contains the identity transformation .

Proof: we know that O (zero operator) is self adjoint operator so O belongs to S hence S is non-empty set Let A_1 and A_2 be any two self adjoint operators on H.

So $A_1^* = A_1$ and $A_2^* = A_2$.

Let α and β be any two real scalars .

then
$$\overline{\alpha} = \alpha$$
 and $\overline{\beta} = \beta$

 $(\alpha A_1 + \beta A_2)^* = \overline{\alpha} A_1^* + \overline{\beta} A_2^* = \alpha A_1 + \beta A_2.$ So $\alpha A_1 + \beta A_2$ is self adjoint operators on H.

Hence $\alpha A_1 + \beta A_2$ belongs to S

Therefore S is a real linear subspace of B(H).

Now we show that S is closed .

Let A be any limit point of S. Then there exists a sequence (A_n) in S such that $A_n \to A$.

We have

So

$$\begin{split} \|A - A^*\| &= \|(A - A_n) + (A_n - A^*)\| \\ &\leq \|(A - A_n)\| + \|(A_n - A^*)\| \\ &= \|(A - A_n)\| + \|(A_n - A^*_n) + (A^*_n - A^*)\| \\ &\leq \|(A - A_n)\| + \|(A_n - A^*_n)\| + \|(A^*_n - A^*)\| \\ &= \|(A - A_n)\| + \|O\| + \|(A - A_n)^*\| \\ &= \|(A - A_n)\| + 0 + \|A - A_n\| \\ &= 2\|(A - A_n)\| \to 0 \text{ as } A_n \to A \,. \\ \|A - A^*\| &= 0 \Rightarrow A - A^* = 0 \Rightarrow A = A^*. \end{split}$$

Hence A is self adjoint operators on H.

so A belongs to S therefore S is closed.

since S is a closed real linear subspace of of a complete space B(H) therefore S is also complete space . Hence

S is a real banach space Also $I = I^*$ so I belongs to S.

Theorem: Let A_1 and A_2 be any two self adjoint operators on H then their product

$$A_1 A_2$$
 is self adjoint $\Leftrightarrow A_1 A_2 = A_2 A_1$

i.e A_1 and A_2 commute.

Proof: Let A_1 and A_2 be any two self adjoint operators on H then $A_1^* = A_1$ and $A_2^* = A_2$.

Suppose that A_1 and A_2 commute. Then $(A_1 A_2)^* = A_2^* A_1^* = A_2 A_1 = A_1 A_2$.

So $A_1 A_2$ is self adjoint.

Conversely, Suppose that $A_1 A_2$ is self adjoint.

To prove that A_1 and A_2 commute.

Since $A_1 A_2$ is self adjoint.

So
$$A_1 A_2 = (A_1 A_2)^* = A_2^* A_1^* = A_2 A_1.$$

Hence A_1 and A_2 commute. END