M.S c Mathematics -SEM 3 Functional Analysis-CC-11 Unit 2

E-content 3-Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Example of Conjugate Space

Prove that the dual space of \boldsymbol{C}_{0} is $\boldsymbol{l}_{\mathbf{1}}$
Proof
${ }^{\text {let }} \boldsymbol{f} \in \boldsymbol{c}_{0}^{*}$ (the dual space of C_{0}) .It is sufficient to show that there exist $a=\left(a_{n}\right) \in l_{1}$ such that
$f(x)=\sum_{n=1}^{\infty} x_{n} a_{n}$ for all and $\|f\|=\|a\|$
Let $\delta_{m}^{n}=\left\{1\right.$ if $\mathrm{n}=\mathrm{m} \boldsymbol{x}=\left(x_{n}\right) \in C_{0}$

$$
0 \text { if } n \neq m
$$

And let $\partial^{k}=(0,0 \ldots .0,1,0,0 \ldots$.$) where$ the number 1 appears as the k th co-
Ordinates and all other $\mathbf{c} 0$-ordinates are 0.
Put $a_{n}=f\left(\boldsymbol{\delta}^{\boldsymbol{n}}\right)$

Let $x=\left(x_{n}\right) \in C_{0}$ and let

$$
y_{n}=\sum_{k=1}^{n} x_{k}^{(k)}
$$

Then $f\left(y_{k}\right)=f\left(\sum_{k=1}^{n} x_{k}^{(k)}=f\left(\partial^{(k)}\right)\right.$

$$
=\sum_{k=1}^{n} x_{k} a_{k}
$$

Now $x-y_{n}=\left(0,0 \ldots 0, x_{n+1}, x_{n+2} \ldots\right)$ and thus $\| x-y_{n}| |=\lim _{n \rightarrow \infty} \operatorname{lub}\left\{\left|\boldsymbol{x}_{\boldsymbol{k}}\right|: k>n\right\}=$ $\lim _{n \rightarrow \infty} \sup \left|x_{n}\right|=0$

Since $\left(x_{n}\right) \in C_{0}$
Thus $\operatorname{Lim}_{n \rightarrow \infty} y_{n}=x \quad$ in $c_{0} \quad$. Since f is
continuous.

$$
\begin{aligned}
& f(x)=\operatorname{Lim}_{n \rightarrow \infty} f\left(y_{n}\right)= \\
& \lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k} a_{k}=\sum_{n=1}^{\infty} x_{n} a_{n}
\end{aligned}
$$

Let $\gamma_{m}^{(n)}=1$ if $m \leq n$ and $a_{n} \geq 0$
-1 if $m \leq n$ and $a_{n}<0$

0 if $\mathbf{m}>\mathbf{n}$

Then $f\left(\boldsymbol{\gamma}^{(n)}\right)=\sum_{m=1}^{\infty} \gamma_{m}^{(n)} a_{m}=\sum_{m=1}^{n}\left|a_{m}\right|$
Now $\gamma^{n} \epsilon C_{0} \quad$ and $\left\|\gamma^{n}\right\|=1$
Hence $\left|\boldsymbol{f}\left(\boldsymbol{\gamma}^{\boldsymbol{n}}\right)\right| \leq\|\boldsymbol{f}\|$
Thus $\sum_{m=1}^{n}\left|a_{m}\right| \leq\|f\| \quad$ for
$n=1,2,3$.
Hence $\mathrm{a}=\left(a_{n}\right) \in \boldsymbol{l}_{1}$
Taking limit
$\|a\|=\sum_{n=1}^{\infty}\left|a_{n}\right| \leq\|f\| \ldots \ldots . .$. (ii)
If $\mathrm{x}=\left(x_{n}\right) \in C_{0}$ and $\|x\|=1$
$|\mathrm{f}(\mathrm{x})|=\left|\sum_{n=1}^{\infty} x_{n} a_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|\left|a_{n}\right|$
$\leq \sum_{n=1}^{\infty}\left|a_{n}\right|=\|a\|$
Hence $\|\boldsymbol{f}\| \leq\|\boldsymbol{a}\|$ (iii)

From (ii) and (iii) we have ||f||=||a||
Therefore the dual space of \boldsymbol{C}_{0} may be identified with $\boldsymbol{l}_{\mathbf{1}}$.

