Motion in Two-Dimensions Source and Sink(12)

Binod Kumar*

M.Sc. Mathematics Semester: III Paper: Fluid Dynamics XII (MAT CC-12) Patna University ,Patna

October 16, 2020

1 Stream function or current function

Let u and v be the components of velocity in two-dimensional motion. The the differential equation of streamline flow, is given by

$$\frac{dx}{u} = \frac{dy}{v} \quad \text{or} \quad vdx - udy = 0 \tag{1}$$

and the equation of continuity of fluid flow is

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad \text{or} \quad \frac{\partial v}{\partial y} = \frac{\partial (-u)}{\partial x}$$
 (2)

Equation (2) be exact condition for the differential equation (1). so solution of equation must be in the form $d\psi = 0$ such that

$$d\psi = \frac{\partial\psi}{\partial x}dx + \frac{\partial\psi}{\partial y} = vdx - udy = 0$$
(3)

so that

$$u = -\frac{\partial \psi}{\partial y}$$
 $v = \frac{\partial \psi}{\partial x}$

and

$$d\psi = 0 \implies \psi = C$$
 (Constant)

This function ψ is known as stream function. Thus the stream function is constant along a streamline motion. Clearly current function is exist by virtue of the equation of continuity and incompressibile=ity of the fluid. Hence current function exists in all type of two-dimensional motion wheather rotational or irrotational.

^{*}Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

1.1 Physical Significance of stream function

Let LM be any curve in the x - y plane and ψ_1 and ψ_2 be stream function at L and M respectively. Let P be an arbitrary point on LM such that $\operatorname{arc} LP = s$ and Q be a neighbouring point on LM such that $\operatorname{arc} LQ = s + \delta s$. Let θ be the angle between tangent at P and x- axis. If u and v be the velocity components at point P, then

velocity at P along inward drawn normal $PN = v \cos \theta - u \sin \theta$ (4) when ψ is the stream function, then we have

$$u = -\frac{\partial \psi}{\partial y}$$
 and $v = \frac{\partial \psi}{\partial x}$ (5)

Also from calculus

$$\cos \theta = \frac{dx}{ds}$$
 and $\sin \theta = \frac{dy}{ds}$ (6)

Using equation (4), we get

flux across PQ from right to left =
$$(v\cos\theta - u\sin\theta)\delta s$$
 (7)

 \therefore Total flux for curve LM from right to left

$$= \int_{LM} (v\cos\theta - u\sin\theta) ds = \int_{LM} \left(\frac{\partial\psi}{\partial x}\frac{dx}{ds} + \frac{\partial\psi}{\partial y}\frac{dy}{ds}\right) ds$$

$$\int_{LM} \left(\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} ds = \int_{\psi_1}^{\psi_2} \left(\frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} ds \right) = \int_{\psi_1}^{\psi_2} d\psi = \psi_1 - \psi_2$$

Thus a property of the current function is that the difference of its values at two points respond the flow across any line joining the points.

Remark 1. Since the velocity normal to δs will contribute to the flux across δs where as the velocity along tangent to δs will not contribute towards flux across δs , we have

flux across
$$\delta s = \delta s \times normal velocity$$

 $(\psi + \delta \psi) - \psi = \delta s \times velocity from right to left across$
 $velocity from right to left across$ $\delta s = \frac{\partial \psi}{\partial s}$
(8)

Remark 2. Velocity components in terms of ψ in plane-polar coordinate (r, θ) can be obtained by using the method in remarks (1). Let q_r and q_{θ} be velocity components in the direction r and θ increasing respectively. Then

$$q_{r} = \text{ velocity from right to left across } r\delta\theta$$

$$= \lim_{\delta\theta \to 0} \frac{\delta\psi}{r\delta\theta} = \frac{1}{r} \frac{\partial\psi}{\partial\theta}$$
and $q_{\theta} = \text{ velocity from right to left across } \delta r$

$$= \lim_{\delta r \to 0} \frac{\delta\psi}{\delta r} = \frac{\partial\psi}{\partial r}$$
Thus $q_{r} = \frac{1}{r} \frac{\partial\psi}{\partial\theta}$ and $q_{\theta} = \frac{\partial\psi}{\partial r}$
(9)

1.2 Basic concept of complex valued function of complex variable

Suppose $z = x + \iota y$ and that $w = f(z) = \phi(x, y) + \iota \psi(x, y)$, where $x, y, \phi, \psi \in \mathbb{R}$. Also suppose that ϕ and ψ and their derivatives are everywhere continuous within a domain. If at any point Z of its domain the derivatives dw/dz = f'(z) is unique, then w is is said to be analytic at that point. If w is analytic throughout the domain is said analytic or regular throughout the domain. If this is analytic throughout the domain then must satisfied the necessary and sufficient condition for w

$$\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
 and $\frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$ (10)

which are known Cuchy-Riemann (C-R) equations. The function ϕ and ψ are known as conjugate functions.

Remark 3.

$$f_x(z) = \frac{\partial \phi}{\partial x} + \iota \frac{\partial \psi}{\partial x}$$

and

$$f_y(z) = \frac{\partial \phi}{\partial y} + \iota \frac{\partial \psi}{\partial y}$$
$$\implies \quad \frac{\partial \phi}{\partial y} + \iota \frac{\partial \psi}{\partial y} = \iota (\frac{\partial \phi}{\partial x} + \iota \frac{\partial \psi}{\partial x})$$

We get another form of C-R equation

$$\iota f_x(z) = f_y(z)$$

Remark 4. Since $z = x + \iota y$ that implies $\overline{z} = x - \iota y$, then $x = \frac{z + \overline{z}}{2}$ and $y = \frac{z - \overline{z}}{2\iota}$ We get we get another form of C-R equation

$$\frac{\partial^2 f}{\partial z \partial \bar{z}} = 0$$

All the best... Next in 13th Econtent