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1 Bernoulli’s equation and its application

1.1 Integration of Euler’s equation of motion

When a velocity potential (¢) exists(i.e., motion is irrotational) and the external forces
(F = (X,Y, 7)) are derivable from potential function (V'), the equation of motion can

always be integrated. Let ¢ = (u, v, w) be velocity, Then by definition, we get
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Then by Euler’s dynamical equations are
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Using equations (1),(2) and (3)
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Then equation (4) becomes
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Multiplying equations (5), (6) and (7) by dz, dy and dz respectively, then adding and

using equations (8), (9) and (10), we have
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where q - ¢ = ¢* = (u* + v? + w?) = square of velocity of fluid particle.
If p is a function of p. Then integrate equation (12)
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where F(t) is an arbitrary function of ¢ arising from integration constant. Equation (13)
is Bernoulli’s equation in most general form.



Case I. Let the fluid be homogeneous and inelastic (so that p = Constant i.e., fluid is
incompressible). The Bernoulli’s equation for unsteady and irrotational motion is

given by
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Case II. If the motion is steady 3 a¢ = (0. The Bernoulli’s equation for steady and irrotational
motion of an 1ncompr6551ble fluid,is given by
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1.2 Bernoulli’s Theorem(Steady motion with no velocity poten-
tial and conservatives field force )

Statement 1. When the motion is steady and the velocity potential does not exist, we
have ) p
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where V' is the force potential from which the external force are derivable

Proof. Consider a streamline AB in the fluid. Let ds be an element of the stream line
and C'D be a small cylinder of cross- sectional area o and ds as axis. If g be the velocity
and S be the component of external fore per unit mass in the direction of the stremline,
then by Newton’s second law of motion, we have
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If the motion be steady g—‘g = 0 and if the external force have a potential function V' such
that S = —2, then equation (14) reduced to
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If p is a function of p, integrating of equation (15) along the streamline AB yields
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