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1 Bernoulli’s equation and its application

1.1 Integration of Euler’s equation of motion

When a velocity potential (φ) exists(i.e., motion is irrotational) and the external forces
(F = (X, Y, Z)) are derivable from potential function (V ), the equation of motion can
always be integrated. Let q = (u, v, w) be velocity, Then by definition, we get
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Then by Euler’s dynamical equations are
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Using equations (1),(2) and (3)
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Multiplying equations (5), (6) and (7) by dx, dy and dz respectively, then adding and
using equations (8), (9) and (10), we have
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where q · q = q2 = (u2 + v2 + w2) = square of velocity of fluid particle.
If ρ is a function of p. Then integrate equation (12)
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where F (t) is an arbitrary function of t arising from integration constant. Equation (13)
is Bernoulli’s equation in most general form.
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Case I. Let the fluid be homogeneous and inelastic (so that ρ = Constant i.e., fluid is
incompressible). The Bernoulli’s equation for unsteady and irrotational motion is
given by
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Case II. If the motion is steady ∂φ
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= 0. The Bernoulli’s equation for steady and irrotational
motion of an incompressible fluid,is given by
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1.2 Bernoulli’s Theorem(Steady motion with no velocity poten-
tial and conservatives field force )

Statement 1. When the motion is steady and the velocity potential does not exist, we
have
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where V is the force potential from which the external force are derivable

Proof. Consider a streamline AB in the fluid. Let δs be an element of the stream line
and CD be a small cylinder of cross- sectional area α and δs as axis. If q be the velocity
and S be the component of external fore per unit mass in the direction of the stremline,
then by Newton’s second law of motion, we have
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If the motion be steady ∂q
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= 0 and if the external force have a potential function V such
that S = −∂V
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, then equation (14) reduced to

∂q2

∂s
+
∂V

∂s
+

1

ρ

∂p

∂s
= 0 (15)

If ρ is a function of p, integrating of equation (15) along the streamline AB yields
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