Bernoulli's equation and its application (11)

Binod Kumar*
M.Sc. Mathematics Semester: III
Paper: Fluid Dynamics XII (MAT CC-12)
Patna University ,Patna

October 16, 2020

1 Bernoulli's equation and its application

1.1 Integration of Euler's equation of motion

When a velocity potential (ϕ) exists(i.e., motion is irrotational) and the external forces $(\boldsymbol{F}=(X, Y, Z))$ are derivable from potential function (V), the equation of motion can always be integrated. Let $\boldsymbol{q}=(u, v, w)$ be velocity, Then by definition, we get

$$
\begin{gather*}
u=\frac{\partial \phi}{\partial x}, \quad v=\frac{\partial \phi}{\partial y}, \quad w=\frac{\partial \phi}{\partial z} \tag{1}\\
X=-\frac{\partial V}{\partial x}, \tag{2}
\end{gather*} Y=-\frac{\partial V}{\partial y}, \quad Z=-\frac{\partial V}{\partial z}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}, \quad \frac{\partial v}{\partial z}=\frac{\partial w}{\partial y}, \quad \frac{\partial w}{\partial x}=\frac{\partial u}{\partial z} \tag{3}
\end{equation*}
$$

Then by Euler's dynamical equations are

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} & =X-\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} & =Y-\frac{1}{\rho} \frac{\partial p}{\partial y} \\
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z} & =Z-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{aligned}
$$

*Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

Using equations (1),(2) and (3)

$$
\left.\begin{array}{l}
-\frac{\partial^{2} u}{\partial t \partial}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial x}=-\frac{\partial V}{\partial x}-\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{4}\\
-\frac{\partial^{2} v}{\partial t \partial y}+u \frac{\partial v}{\partial y}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial y}=-\frac{\partial V}{\partial y}-\frac{1}{\rho} \frac{\partial p}{\partial y} \\
-\frac{\partial^{2} w}{\partial t \partial z}+u \frac{\partial w}{\partial z}+v \frac{\partial w}{\partial z}+w \frac{\partial w}{\partial z}=-\frac{\partial V}{\partial z}-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{array}\right\}
$$

Using

$$
\begin{aligned}
\frac{1}{2} \frac{\partial}{\partial x}\left(u^{2}+v^{2}+w^{2}\right) & =u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial x} \\
\frac{1}{2} \frac{\partial}{\partial y}\left(u^{2}+v^{2}+w^{2}\right) & =u \frac{\partial v}{\partial y}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial y} \\
\frac{1}{2} \frac{\partial}{\partial z}\left(u^{2}+v^{2}+w^{2}\right) & =u \frac{\partial w}{\partial z}+v \frac{\partial w}{\partial z}+w \frac{\partial w}{\partial z}
\end{aligned}
$$

Then equation (4) becomes

$$
\begin{align*}
-\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial t}\right)+\frac{1}{2} \frac{\partial}{\partial x}\left(u^{2}+v^{2}+w^{2}\right) & =-\frac{\partial V}{\partial x}-\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{5}\\
-\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial t}\right)+\frac{1}{2} \frac{\partial}{\partial y}\left(u^{2}+v^{2}+w^{2}\right) & =-\frac{\partial V}{\partial y}-\frac{1}{\rho} \frac{\partial p}{\partial y} \tag{6}\\
-\frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial t}\right)+\frac{1}{2} \frac{\partial}{\partial z}\left(u^{2}+v^{2}+w^{2}\right) & =-\frac{\partial V}{\partial z}-\frac{1}{\rho} \frac{\partial p}{\partial z} \tag{7}
\end{align*}
$$

Now,

$$
\begin{gather*}
d\left(\frac{\partial \phi}{\partial t}\right)=\frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial t}\right) d x+\frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial t}\right) d y+\frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial t}\right) d z \tag{8}\\
d V=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y+\frac{\partial v}{\partial z} d z \tag{9}\\
d p=\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial y} d y+\frac{\partial p}{\partial z} d z \tag{10}\\
d\left(u^{2}+v^{2}+w^{2}\right)=\frac{\partial}{\partial x}\left(u^{2}+v^{2}+w^{2}\right) d x+\frac{\partial}{\partial y}\left(u^{2}+v^{2}+w^{2}\right) d y+\frac{\partial}{\partial z}\left(u^{2}+v^{2}+w^{2}\right) d z \tag{11}
\end{gather*}
$$

Multiplying equations (5), (6) and (7) by $d x, d y$ and $d z$ respectively, then adding and using equations (8), (9) and (10), we have

$$
\begin{array}{r}
-d\left(\frac{\partial \phi}{\partial t}\right)+\frac{1}{2} \frac{\partial}{\partial x}\left(u^{2}+v^{2}+w^{2}\right)=-d V-\frac{1}{\rho} d p \\
\text { or, } \quad-d\left(\frac{\partial \phi}{\partial t}\right)+\frac{1}{2} d q^{2}+d V+\frac{1}{\rho} d p=0 \tag{12}
\end{array}
$$

where $\boldsymbol{q} \cdot \boldsymbol{q}=q^{2}=\left(u^{2}+v^{2}+w^{2}\right)=$ square of velocity of fluid particle.
If ρ is a function of p. Then integrate equation (12)

$$
\begin{equation*}
-\frac{\partial \phi}{\partial t}+\frac{1}{2} q^{2}+V+\int \frac{d p}{\rho}=F(t) \tag{13}
\end{equation*}
$$

where $F(t)$ is an arbitrary function of t arising from integration constant. Equation (13) is Bernoulli's equation in most general form.

Case I. Let the fluid be homogeneous and inelastic (so that $\rho=$ Constant i.e., fluid is incompressible). The Bernoulli's equation for unsteady and irrotational motion is given by

$$
-\frac{\partial \phi}{\partial t}+\frac{1}{2} q^{2}+V+\int \frac{d p}{\rho}=F(t)
$$

Case II. If the motion is steady $\frac{\partial \phi}{\partial t}=0$. The Bernoulli's equation for steady and irrotational motion of an incompressible fluid, is given by

$$
\frac{q^{2}}{2}+V+\frac{p}{\rho}=F(t)
$$

1.2 Bernoulli's Theorem(Steady motion with no velocity potential and conservatives field force)

Statement 1. When the motion is steady and the velocity potential does not exist, we have

$$
\frac{1}{2} q^{2}+V+\int \frac{d p}{\rho}=C
$$

where V is the force potential from which the external force are derivable
Proof. Consider a streamline $A B$ in the fluid. Let δs be an element of the stream line and $C D$ be a small cylinder of cross- sectional area α and δs as axis. If \boldsymbol{q} be the velocity and S be the component of external fore per unit mass in the direction of the stremline, then by Newton's second law of motion, we have

If the motion be steady $\frac{\partial \boldsymbol{q}}{\partial t}=0$ and if the external force have a potential function V such that $S=-\frac{\partial V}{\partial s}$, then equation (14) reduced to

$$
\begin{equation*}
\frac{\partial \boldsymbol{q}^{2}}{\partial s}+\frac{\partial V}{\partial s}+\frac{1}{\rho} \frac{\partial p}{\partial s}=0 \tag{15}
\end{equation*}
$$

If ρ is a function of p, integrating of equation (15) along the streamline $A B$ yields

$$
\begin{equation*}
\frac{1}{2} q^{2}+V+\int \frac{d p}{\rho}=C \tag{16}
\end{equation*}
$$

All the best...
Next in 12th Econtent

