Simplex Method (M.Sc. Sem-III)

By: Shailendra Pandit

Guest Assistant Prof. of Mathematics P.G. Dept. Patna University, Patna

Email: sksuman1575@gmail.com

Call: 9430974625

WOLFE'S MODIFIED SIMPLEX METHOD

The iterative procedure for the solution of a quadratic programming problem by Wolfe's modified simplex method can be summarized as follows:

Step-1: Convert the inequality constraints into equations by introducing the slack varibales S_t^2 in the *i*th constraint, i = 1, 2,, m, and the slack variables S_{m+j}^2 in the *j*th non-negativity constraint j = 1, 2,, n.

Step-2: Construct the Langrangian function

$$L(x, S, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_{i} \left[\sum_{j=1}^{n} a_{ij} x_{j} - b_{i} + S_{i}^{2} \right] - \sum_{j=1}^{n} \lambda_{m+j} \left(-x_{j} + S_{m+j}^{2} \right)$$

where
$$x = (x_1, x_2, ..., x_n)$$
, $S = (S_1, ..., S_{m+n})$, $\lambda = (\lambda_1, ..., \lambda_{m+n})$.

Differentiate $L(x, S, \lambda)$ partially with respect to the components of x, S and λ and equate the first order partial derivatives equal to zero. Derive the Kuhn-Tucker conditions from the resulting equations.

Step-3: Introduce the non-negative artificial variables A_j , j = 1, 2, ..., n in the Kuhn-Tucker condition.

$$c_j + \sum_{k=1}^{n} d_{jk} x_k - \sum_{i=1}^{m} \lambda_i a_{ij} + \lambda_{m+j} = 0$$

for j = 1, 2,, n and construct an objective function

 $z = A_1 + A_2 + \dots + A_n$

Step-4: Obtain an initial basic feasible solution to the LPP:

Minimize $z = A_1 + A_2 + + A_n$ subject to the constraints :

$$\sum_{k=1}^{n} d_{jk} x_{k} - \sum_{i=1}^{m} \lambda_{i} a_{ij} + \lambda_{m+j} + A_{j} = -c_{j} \qquad (j = 1, 2, ..., n)$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + x_{n+i} = b_{i} \qquad (i = 1, 2, ..., m)$$

$$A_{j}, \lambda_{j}, \lambda_{m+j}, x_{j} \ge 0 \qquad (i = 1, 2, ..., m; j = 1, 2, ..., n)$$

where $x_{n+1} = S_i^2$, i = 1, 2,, m, and satisfying the complementary slackness conditions.

$$\sum_{j=1}^{n} \lambda_{m+j} x_j + \sum_{i=1}^{m} x_{n+i} \lambda_i = 0$$

Step-5: Use two phase simplex method to obtain an optimum solution to the LPP of step-4, the solution satisfying the complementary slackness condition.

Step-6: The optimum solution obtained in step-5 is an optimum solution to the given QPP also.

Note: If the given QPP is in the minimization form, convert it into that of maximization by appropriate adjustment in $f(x_1, x_2, ..., x_n)$.

SAMPLE PROBLEM

1. Use Wolfe's method to solve the QPP:

Maximize
$$z = 2x_1 + 3x_2 - 2x_1^2$$
 subject to the constraints:
 $x_1 + 4x_2 \le 4, x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$.

Sol. We convert inequality constraints into equations by introducing slack variables S_1^2 and S_2^2 respectively. Considering $x_1 \ge 0$ and $x_2 \ge 0$ also as the inequality constraints, we convert them also into equations by introducing slack variables S_3^2 and S_4^2 in them. The problem thus becomes:

Maximize $z = 2x_1 + 3x_2 - 2x_1^2$ subject to the constraints :

$$x_1 + 4x_2 + S_1^2 = 4$$
, $x_1 + x_2 + S_2^2 = 2$, $-x_1 + S_3^2 = 0$, $-x_2 + S_4^2 = 0$.

Construct the Lagrangian function

$$\begin{split} L &= L\left(x_{1}, \ x_{2}, \ S_{1}, \ S_{2}, \ S_{3}, \ S_{4}, \ \lambda_{1}, \ \lambda_{2}, \ \lambda_{3}, \ \lambda_{4}\right) \\ &= \left(2x_{1} + 3x_{2} - 2x_{1}^{2}\right) - \lambda_{1}\left(x_{1} + 4x_{2} + S_{1}^{2} - 4\right) - \lambda_{2}\left(x_{1} + x_{2} + S_{2}^{2} - 2\right) - \lambda_{3}\left(-x_{1} + S_{3}^{2}\right) - \lambda_{4}\left(-x_{2} + S_{4}^{2}\right). \end{split}$$

As x_1^2 represents a negative semi-definite quadratic form $z = 2x_1 + 3x_2 - 2x_1^2$ is concave in x_1 , x_2 . Thus, maxima of L will be maxima of $z = 2x_1 + 3x_2 - 2x_1^2$ and *vice-versa*. To derive the necessary and sufficient conditions for maxima of L (and hence of z) we equate the first-order partial derivatives of L w.r.t. the variables x_1 , x_2 , S_i 's and λ_i 's. Thus, we have

$$\frac{\partial L}{\partial x_1} = 2 - 4x_1 - \lambda_1 - \lambda_2 + \lambda_3 = 0$$

$$\frac{\partial L}{\partial x_2} = 3 - 4x_1 - \lambda_2 + \lambda_4 = 0$$

$$\frac{\partial L}{\partial S_1} = -2\lambda_1 S_1 = 0;$$

$$\frac{\partial L}{\partial \lambda_1} = x_1 + 4x_2 + S_1^2 - 4 = 0$$

$$\frac{\partial L}{\partial \lambda_2} = -2\lambda_2 S_2 = 0;$$

$$\frac{\partial L}{\partial \lambda_2} = x_1 + x_2 + S_2^2 - 2 = 0$$

$$\frac{\partial L}{\partial \lambda_3} = -2\lambda_3 S_3 = 0;$$

$$\frac{\partial L}{\partial \lambda_3} = -x_1 + S_3^2 = 0$$

$$\frac{\partial L}{\partial \lambda_4} = -x_1 + S_3^2 = 0$$

$$\frac{\partial L}{\partial \lambda_4} = -x_2 + S_4^2 = 0$$

Upon simplification and necessary manipulations these yield:

(1)
$$\begin{cases} 4x_1 + \lambda_1 + \lambda_2 - \lambda_3 = 2, \ 4\lambda_1 + \lambda_2 - \lambda_4 = 3 \\ x_1 + 4x_2 + S_1^2 = 4, \ x_1 + x_2 + S_2^2 = 2 \end{cases}$$

(2)
$$\lambda_1 S_1^2 + \lambda_2 S_2^2 + x_1 \lambda_3 + x_2 \lambda_4 = 0, x_1, x_2, S_1^2, S_2^2, \lambda_i \ge 0, i = 1, 2, 3, 4.$$

A solution x_j , j=1, 2 to (1) above and satisfying (2) shall necessarily be an optimal one for maximizing L. To determine the solution to the above simultaneous equation (1), we introduce the artificial variables A_1 and A_2 (both non-negative) in the first two constraints of (1) and construct the dummy objective function $z=A_1+A_2$. Then the problem becomes

Maximize $z = -A_1 - A_2$ subject to the constraints:

$$4x_{1} + \lambda_{1} + \lambda_{2} - \lambda_{3} + A_{1} = 2$$

$$4\lambda_{1} + \lambda_{2} - \lambda_{4} + A_{2} = 3$$

$$x_{1} + 4x_{2} + x_{3} = 4$$

$$x_{1} + x_{2} + x_{4} = 2$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

$$A_{1}, A_{2}, \lambda_{i} \ge 0, i = 1, ..., 4$$

satisfying the complementary slackness condition $\Sigma \lambda_i x_i = 0$, where we have replaced S_1^2 by x_3 and S_2^2 by x_4 .

The optimum solution to the above LPP shall now be obtained by the two phase simplex method. An initial basic feasible solution to the LPP is clearly given by:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \\ 2 \end{bmatrix}$$

The simplex iterations leading to an optimum solution are: Initial Iteration. Enter x_1 and drop A_1 .

C _B	У В	X _B	x ₁	x ₂	x ₃	X ₄	λ_1	λ_2	λ_3	λ_4	A ₁	A ₂
1	A_1	2	4	0	0	0	1	1	-1	0	1	0
1	A_2	3	0	0	0	0	4	1	0	-1	0	1
0	x_3	4	1	4	1	0	0	0	0	0	0	0
0	x_4	2	1	1	0	1	0	0	0	0	0	0
	Z	5	4	0	0	0	5	2	-1	-1	0	0

From the above table, we observe that x_1 , λ_1 or λ_2 can enter the basis. But λ_1 and λ_2 will not enter the basis, because x_3 and x_4 are in the basis. This is in view of the complimentary slackness conditions $\lambda_1 x_3 = 0$ and $\lambda_2 x_4 = 0$.

First Iteration. Enter x_2 and drop x_3 .

c_B	У В	x _B	X ₁	x ₂	x ₃	x_4	λ_1	λ_2	λ_3	λ_4	A_2
0	x_1	1/2	1	0	0	0	1/4	1/4	1/4	0	0
1	A_2	3	0	0	0	0	4	1	0	-1	1
0	x ₃	7/2	0	4	1	0	-1/4	-1/4	1/4	0	0
0	X_4	3/2	0	1	0	1	-1/4	-1/4	1/4	0	0
	Z	3	0	0	0	0	4	1	0	0	0

Here, we observe that either λ_1 or λ_2 can enter the basis. But x_3 and x_4 are still in the basis, therefore these cannot enter the basis because of the complementary slackness conditions. However, since λ_4 is not in the basis, x_2 can enter the basis (because of the condition $\lambda_4 x_2 = 0$).

Second Iteration. Enter λ_1 and drop A_2 .

C _B	У В	X _B	X ₁	x ₂	x ₃	X ₄	λ_1	λ_2	λ_3	λ_4	A ₂
0	x ₁	1/2	1	0	0	0	1/4	1/4	-1/4	0	0
1	A_2	3	0	0	0	0	4	1	0	-1	1
0	x_2	7/8	0	1	1/4	0	-1/16	-1/16	1/16	0	0
0	X_4	5/8	0	1	-1/4	1	-3/16	-3/16	3/16	0	0
· · · · · ·	Z	3	0	0	0	0	4	1	0	-1	0

From this table, we see that λ_1 or λ_2 can enter the basis. But since x_4 is in the basis, λ_2 can't enter the basis and hence λ_1 enters the basis.

Final Iteration. Optimum solution.

C _B	У В	x _B	X ₁	x ₂	X ₃	X ₄	λ_1	λ_2	λ_3	λ_4
0	x ₁	5/6	1	0	0	0	0	3/16	-1/4	1/16
0	λ_{1}	3/4	0	0	0	0	1	1/4	0	-1/4
0	\mathbf{x}_{2}	59/64	0	1	1/4	0	0	-3/64	1/16	-1/64
0	x_4	49/64	0	0	-1/4	1	0	-9/64	3/16	-3/64
	Z	0	0	0	0	0	0	0	0	0

The optimum solution is

$$x_1 = 5/16$$
, $x_2 = 59/64$ and maximum $z = 3.19$

PROBLEMS

Use: Wolfe's method in solving the following quadratic programming problems:

1. Maximize $z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$ subject to the constraints :

$$x_1 + 2x_2 \le 2$$
, x_1 , $x_2 \ge 0$.

2. Maximize $z = 8x_1 + 10x_2 - x_1^2 - x_2^2$ subject to the constraints :

$$3x_1 + 2x_2 \le 6$$
, x_1 , $x_2 \ge 0$.

3. Maximize $z = 6x_1 + 3x_2 - 4x_1x_2 - 2x_1^2 - 3x_2^2$ subject to the constraints :

$$x_1 + x_2 \le 1$$
, $2x_1 + 3x_2 \le 4$; $x_1, x_2 \ge 0$.