# Simplex Method <br> (M.Sc. Sem-III) 

By : Shailendra Pandit<br>Guest Assistant Prof. of Mathematics<br>P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com
Call : 9430974625

## WOLFE'S MODIFIED SIMPLEX METHOD

The iterative procedure for the solution of a quadratic programming problem by Wolfe's modified simplex method can be summarized as follows :

Step-1 : Convert the inequality constraints into equations by introducing the slack varibales $S_{t}^{2}$ in the $i$ th constraint, $i=1,2, \ldots, m$, and the slack variables $S_{m+j}^{2}$ in the $j$ th non-negativity constraint $j=1,2, \ldots, n$.

Step-2 : Construct the Langrangian function

$$
L(x, S, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i}\left[\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}+S_{i}^{2}\right]-\sum_{j=1}^{n} \lambda_{m+j}\left(-x_{j}+S_{m+j}^{2}\right)
$$

where $x=\left(x_{1}, x_{2}, \ldots ., x_{n}\right), S=\left(S_{1}, \ldots . ., S_{m+n}\right), \lambda=\left(\lambda_{1}, \ldots ., \lambda_{m+n}\right)$.
Differentiate $L(x, S, \lambda)$ partially with respect to the components of $\mathrm{x}, \mathrm{S}$ and $\lambda$ and equate the first order partial derivatives equal to zero. Derive the Kuhn-Tucker conditions from the resulting equations.

Step-3: Introduce the non-negative artificial variables $A_{j}, j=1,2, \ldots, n$ in the Kuhn-Tucker condition.

$$
c_{j}+\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+\lambda_{m+j}=0
$$

for $j=1,2, \ldots, n$ and construct an objective function $z=A_{1}+A_{2}+\ldots .+A_{n}$

Step-4: Obtain an initial basic feasible solution to the LPP :
Minimize $z=A_{1}+A_{2}+\ldots .+A_{n}$ subject to the constraints :

$$
\begin{array}{cl}
\sum_{k=1}^{n} d_{j k} x_{k}-\sum_{i=1}^{m} \lambda_{i} a_{i j}+\lambda_{m+j}+A_{j}=-c_{j} & (j=1,2, \ldots, n) \\
\sum_{j=1}^{n} a_{i j} x_{j}+x_{n+i}=b_{i} & (i=1,2, \ldots, m) \\
A_{j}, \lambda_{i}, \lambda_{m+j}, x_{j} \geq 0 & (i=1,2, \ldots, m ; j=1,2, \ldots, n)
\end{array}
$$

where $x_{n+1}=S_{i}^{2}, i=1,2, \ldots, m$, and satisfying the complementary slackness conditions.

$$
\sum_{j=1}^{n} \lambda_{m+j} x_{j}+\sum_{i=1}^{m} x_{n+i} \lambda_{i}=0
$$

Step-5 : Use two phase simplex method to obtain an optimum solution to the LPP of step-4, the solution satisfying the complementary slackness condition.

Step-6 : The optimum solution obtained in step-5 is an optimum solution to the given QPP also.
Note : If the given QPP is in the minimization form, convert it into that of maximization by appropriate adjustment in $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

## SAMPLE PROBLEM

1. Use Wolfe's method to solve the QPP :

Maximize $z=2 x_{1}+3 x_{2}-2 x_{1}^{2}$ subject to the constraints :

$$
\begin{gathered}
x_{1}+4 x_{2} \leq 4, x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0 .
\end{gathered}
$$

Sol. We convert inequality constraints into equations by introducing slack variables $S_{1}^{2}$ and $S_{2}^{2}$ respectively. Considering $x_{1} \geq 0$ and $x_{2} \geq 0$ also as the inequality constraints, we convert them also into equations by introducing slack variables $S_{3}^{2}$ and $S_{4}^{2}$ in them. The problem thus becomes :

Maximize $z=2 x_{1}+3 x_{2}-2 x_{1}^{2}$ subject to the constraints:

$$
x_{1}+4 x_{2}+S_{1}^{2}=4, x_{1}+x_{2}+S_{2}^{2}=2,-x_{1}+S_{3}^{2}=0,-x_{2}+S_{4}^{2}=0 .
$$

Construct the Lagrangian function

$$
\begin{aligned}
L & =L\left(x_{1}, x_{2}, S_{1}, S_{2}, S_{3}, S_{4}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \\
& =\left(2 x_{1}+3 x_{2}-2 x_{1}^{2}\right)-\lambda_{1}\left(x_{1}+4 x_{2}+S_{1}^{2}-4\right)-\lambda_{2}\left(x_{1}+x_{2}+S_{2}^{2}-2\right)-\lambda_{3}\left(-x_{1}+S_{3}^{2}\right)-\lambda_{4}\left(-x_{2}+S_{4}^{2}\right) .
\end{aligned}
$$

As $x_{1}^{2}$ represents a negative semi-definite quadratic form $z=2 x_{1}+3 x_{2}-2 x_{1}^{2}$ is concave in $x_{1}, x_{2}$. Thus, maxima of $L$ will be maxima of $z=2 x_{1}+3 x_{2}-2 x_{1}^{2}$ and vice-versa. To derive the necessary and sufficient conditions for maxima of $L$ (and hence of $z$ ) we equate the first-order partial derivatives of $L$ w.r.t. the variables $x_{1}, x_{2}, S_{i}^{\prime \prime} s$ and $\lambda_{i}{ }^{\prime} s$. Thus, we have

$$
\begin{array}{ll}
\frac{\partial L}{\partial x_{1}}=2-4 x_{1}-\lambda_{1}-\lambda_{2}+\lambda_{3}=0 & \frac{\partial L}{\partial x_{2}}=3-4 x_{1}-\lambda_{2}+\lambda_{4}=0 \\
\frac{\partial L}{\partial S_{1}}=-2 \lambda_{1} S_{1}=0 ; & \frac{\partial L}{\partial \lambda_{1}}=x_{1}+4 x_{2}+S_{1}^{2}-4=0 \\
\frac{\partial L}{\partial S_{2}}=-2 \lambda_{2} S_{2}=0 ; & \frac{\partial L}{\partial \lambda_{2}}=x_{1}+x_{2}+S_{2}^{2}-2=0 \\
\frac{\partial L}{\partial S_{3}}=-2 \lambda_{3} S_{3}=0 ; & \frac{\partial L}{\partial \lambda_{3}}=-x_{1}+S_{3}^{2}=0 \\
\frac{\partial L}{\partial S_{4}}=-2 \lambda_{4} S_{4}=0 ; & \frac{\partial L}{\partial \lambda_{4}}=-x_{2}+S_{4}^{2}=0
\end{array}
$$

Upon simplification and necessary manipulations these yield :

$$
\left\{\begin{array}{c}
4 x_{1}+\lambda_{1}+\lambda_{2}-\lambda_{3}=2,4 \lambda_{1}+\lambda_{2}-\lambda_{4}=3  \tag{1}\\
x_{1}+4 x_{2}+S_{1}^{2}=4, x_{1}+x_{2}+S_{2}^{2}=2
\end{array}\right.
$$

(2) $\lambda_{1} S_{1}^{2}+\lambda_{2} S_{2}^{2}+x_{1} \lambda_{3}+x_{2} \lambda_{4}=0, x_{1}, x_{2}, S_{1}^{2}, S_{2}^{2}, \lambda_{i} \geq 0, i=1,2,3,4$.

A solution $x_{j}, j=1,2$ to (1) above and satisfying (2) shall necessarily be an optimal one for maximizing $L$. To determine the solution to the above simultaneous equation (1), we introduce the artificial variables $A_{1}$ and $A_{2}$ (both non-negative) in the first two constraints of (1) and construct the dummy objective function $z=A_{1}+A_{2}$.

Then the problem becomes

Maximize $z=-A_{1}-A_{2}$ subject to the constraints :

$$
\begin{gathered}
4 x_{1}+\lambda_{1}+\lambda_{2}-\lambda_{3}+A_{1}=2 \\
4 \lambda_{1}+\lambda_{2}-\lambda_{4}+A_{2}=3 \\
x_{1}+4 x_{2}+x_{3}=4 \\
x_{1}+x_{2}+x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 . \\
A_{1}, A_{2}, \lambda_{i} \geq 0, i=1, \ldots, 4
\end{gathered}
$$

satisfying the complementary slackness condition $\Sigma \lambda_{i} x_{i}=0$, where we have replaced $S_{1}^{2}$ by $x_{3}$ and $S_{2}^{2}$ by $x_{4}$.

The optimum solution to the above LPP shall now be obtained by the two phase simplex method. An initial basic feasible solution to the LPP is clearly given by :

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{1} \\
A_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4 \\
2
\end{array}\right]
$$

The simplex iterations leading to an optimum solution are :
Initial Iteration. Enter $x_{1}$ and drop $A_{1}$.

| $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{x}_{4}$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\mathrm{~A}_{1}$ | $\mathrm{~A}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{~A}_{1}$ | 2 | 4 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 1 | 0 |
| 1 | $\mathrm{~A}_{2}$ | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | -1 | 0 | 1 |
| 0 | $\mathrm{x}_{3}$ | 4 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | $\mathrm{x}_{4}$ | 2 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | z | 5 | 4 | 0 | 0 | 0 | 5 | 2 | -1 | -1 | 0 | 0 |

From the above table, we observe that $x_{1}, \lambda_{1}$ or $\lambda_{2}$ can enter the basis. But $\lambda_{1}$ and $\lambda_{2}$ will not enter the basis, because $x_{3}$ and $x_{4}$ are in the basis. This is in view of the complimentary slackness conditions $\lambda_{1} x_{3}=0$ and $\lambda_{2} x_{4}=0$.

First Iteration. Enter $x_{2}$ and drop $x_{3}$.

| $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{x}_{4}$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\mathrm{~A}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{x}_{1}$ | $1 / 2$ | 1 | 0 | 0 | 0 | $1 / 4$ | $1 / 4$ | $1 / 4$ | 0 | 0 |
| 1 | $\mathrm{~A}_{2}$ | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | -1 | 1 |
| 0 | $\mathrm{x}_{3}$ | $7 / 2$ | 0 | 4 | 1 | 0 | $-1 / 4$ | $-1 / 4$ | $1 / 4$ | 0 | 0 |
| 0 | $\mathrm{x}_{4}$ | $3 / 2$ | 0 | 1 | 0 | 1 | $-1 / 4$ | $-1 / 4$ | $1 / 4$ | 0 | 0 |
|  | z | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 |

Here, we observe that either $\lambda_{1}$ or $\lambda_{2}$ can enter the basis. But $x_{3}$ and $x_{4}$ are still in the basis, therefore these cannot enter the basis because of the complementary slackness conditions. However, since $\lambda_{4}$ is not in the basis, $x_{2}$ can enter the basis (because of the condition $\lambda_{4} x_{2}=0$ ).

Second Iteration. Enter $\lambda_{1}$ and drop $A_{2}$.

| $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{x}_{4}$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\mathrm{~A}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{x}_{1}$ | $1 / 2$ | 1 | 0 | 0 | 0 | $1 / 4$ | $1 / 4$ | $-1 / 4$ | 0 | 0 |
| 1 | $\mathrm{~A}_{2}$ | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | -1 | 1 |
| 0 | $\mathrm{x}_{2}$ | $7 / 8$ | 0 | 1 | $1 / 4$ | 0 | $-1 / 16$ | $-1 / 16$ | $1 / 16$ | 0 | 0 |
| 0 | $\mathrm{x}_{4}$ | $5 / 8$ | 0 | 1 | $-1 / 4$ | 1 | $-3 / 16$ | $-3 / 16$ | $3 / 16$ | 0 | 0 |
|  | z | 3 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | -1 | 0 |

From this table, we see that $\lambda_{1}$ or $\lambda_{2}$ can enter the basis. But since $x_{4}$ is in the basis, $\lambda_{2}$ can't enter the basis and hence $\lambda_{1}$ enters the basis.

Final Iteration. Optimum solution.

| $\mathrm{C}_{\mathrm{B}}$ | $\mathrm{y}_{\mathrm{B}}$ | $\mathrm{x}_{\mathrm{B}}$ | $\mathrm{x}_{1}$ | $\mathrm{x}_{2}$ | $\mathrm{x}_{3}$ | $\mathrm{x}_{4}$ | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathrm{x}_{1}$ | $5 / 6$ | 1 | 0 | 0 | 0 | 0 | $3 / 16$ | $-1 / 4$ | $1 / 16$ |
| 0 | $\lambda_{1}$ | $3 / 4$ | 0 | 0 | 0 | 0 | 1 | $1 / 4$ | 0 | $-1 / 4$ |
| 0 | $\mathrm{x}_{2}$ | $59 / 64$ | 0 | 1 | $1 / 4$ | 0 | 0 | $-3 / 64$ | $1 / 16$ | $-1 / 64$ |
| 0 | $\mathrm{x}_{4}$ | $49 / 64$ | 0 | 0 | $-1 / 4$ | 1 | 0 | $-9 / 64$ | $3 / 16$ | $-3 / 64$ |
|  | z | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

The optimum solution is

$$
x_{1}=5 / 16, x_{2}=59 / 64 \text { and maximum } z=3.19
$$

## PROBLEMS

Use :Wolfe's method in solving the following quadratic programming problems :

1. Maximize $z=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}$ subject to the constraints :

$$
x_{1}+2 x_{2} \leq 2, x_{1}, x_{2} \geq 0
$$

2. Maximize $z=8 x_{1}+10 x_{2}-x_{1}^{2}-x_{2}^{2}$ subject to the constraints :

$$
3 x_{1}+2 x_{2} \leq 6, x_{1}, x_{2} \geq 0 .
$$

3. Maximize $z=6 x_{1}+3 x_{2}-4 x_{1} x_{2}-2 x_{1}^{2}-3 x_{2}^{2}$ subject to the constraints :

$$
x_{1}+x_{2} \leq 1,2 x_{1}+3 x_{2} \leq 4 ; x_{1}, x_{2} \geq 0
$$

