M.S c Mathematics -SEM 3 Functional Analysis- CC-11 Unit 3

E-content 3-Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Dual Space or (conjugate space)

Let E be a normed linear space over a field K (which is R or C). Then the set $B(E, K)$ of all continuous linear functional on E is a Baanach space with respect to pointwise linear operations and the norm defined by

$$
\|\boldsymbol{T}\|=\operatorname{Sup}_{\substack{x \in E \\ x \neq 0}} \frac{|\boldsymbol{T}(x)|}{\|x\|} \boldsymbol{T} \in \boldsymbol{B}(\boldsymbol{E}, \boldsymbol{F})
$$

The set $B(E, K)$ is denoted by E^{*} and is called the (topological) dual space or the conjugate space or the adjoint space of E (Every element of E^{*} is a continuous linear functional on E). Thus the dual space of every normed linear space is a Banach space.

Example

If T is a continuous linear transformation of a normed linear space E into a normed linear space f, an if M is its null space (i.e kernel) show that T
induces a natural linear transformation T^{\prime} of $\frac{E}{M}$ into F and that $\left\|\boldsymbol{T}^{\prime}\right\|=\|\boldsymbol{T}\|$

Proof

We know that $M=\{x \in E: T \boldsymbol{x}=\mathbf{0}\}=\boldsymbol{T}^{-1}\{0\}$ is a closed linear subspace of E and hence $\frac{E}{M}$ is a normed linear space with the norm of a coset $\mathrm{X}+\mathrm{M}$ in $\frac{E}{M}$ is defined by

$$
\|x+M\|=\inf _{v \in M}\|x+v\|
$$

We define $\boldsymbol{T}^{\prime}: \frac{\boldsymbol{E}}{\boldsymbol{M}} \rightarrow \boldsymbol{F}^{\text {by }} \boldsymbol{T}^{\prime}(\boldsymbol{x}+\boldsymbol{M})=\boldsymbol{T} \boldsymbol{x}$
Let $\mathbf{x}+\mathrm{M}, \mathrm{y}+\mathrm{M}$, be any two elements of $\frac{E}{M}$ and $\alpha^{\text {and }} \beta$ be any scalars. Then

$$
\begin{gathered}
T^{\prime}\{\alpha(x+M)+\beta(y+M) \\
=T^{\prime}((\alpha x+M)+(\beta y+M)) \\
=T^{\prime}((\alpha x+\beta y)+M \\
=T(\alpha x+\beta y) \\
=\alpha T x+\beta T y \\
=\alpha T^{\prime}(x+M)+\beta T^{\prime}(y+M)
\end{gathered}
$$

Hence \boldsymbol{T}^{\prime} is a linear transformation
 written as $\boldsymbol{x}+\mathbf{0}$ with $\boldsymbol{0} \in \boldsymbol{M}$.

$$
\begin{aligned}
\left\|T^{\prime}\right\| & =\sup \left\{\left\|T^{\prime}(x+M)\right\|: x \in E,\|x+M\| \leq 1\right\} \\
& =\sup \{\|T x\|: x \in E, \inf \|x+v\| \leq 1 \\
& =\sup \{\|T x\|: x \in E, v \in M,\|x+v\| \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& =\sup \{\|T x+T v\|: x \in E, v \in M,\|x+v\| \leq 1 \\
& \qquad \quad[T(v)=\mathbf{0} \text { for } v \in M] \\
& =\sup \{\|T(x+v)\|: x \in E, v \in M,\|x+v\| \leq 1\} \\
& =\sup \{\|T x\|: x \in E,\|x\| \leq 1 \\
& =\|T\| \text { Proved }
\end{aligned}
$$

