M.S c Mathematics -SEM 2 Number Theory CC-10 Unit 2

E-content -By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna
 Content-Fundamental Theorem of Arithmetic or Uniqueness theorem

Statement: Every Postive integer $\mathrm{n}>1$ can be expressed as the product of prime factors uniquely.

Proof: Let $\mathrm{n}>1$ be an integer. If n is a prime number, then we have nothing to do to prove the theorem.

If n is a composite number, then there exists a prime p , such that for some integer n, we have ;
$n=p_{1} n_{1}$
If n_{1} is a prime number, then n is expressible as the product of prime Factors by equation (i)

But if n_{1} is a composite number, then there exists a prime number p_{2} such that
$n_{1}=p_{2} n_{2}^{\prime} \quad$ For some integers n_{2}

Therefore from (i)
$n=p_{1} n_{1}$
$n=p_{1} p_{2} n_{2}$ (using
(ii) \qquad .(iii)

If n_{2} is a prime number, then n is expressed by (iii) as the product of prime Factors. But if n_{2} is a composite number, then we continue the process .

Since, $n>n_{1}>n_{2}>$ \qquad
the process cannot continue infinitely.

Therefore, after finite number of steps, we get

$$
n=p_{1} p_{2} \ldots p_{k^{\prime}}
$$

where all p_{i} 's are prime numbers.
Now, suppose if possible n can be represented as a product of primes in two ways as follows,

where p_{i} and q_{i} are primes in the ascending order i.e
$\mathrm{p}_{1} \leq \mathrm{p}_{2} \leq \cdots \cdots \ldots \ldots \ldots \ldots . \mathrm{p}_{\mathrm{r}}$
$q_{1} \leq q_{2} \leq \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{q_{s}}$
Since,$p_{1} \mid q_{1} q_{2} \ldots \ldots q_{s}$, there exist some primes q_{k} such that $p_{1} \mid q_{k}$.

But p_{1} and q_{k} are both primes
Therefore $\mathrm{p}_{1}=\mathrm{q}_{\mathrm{k}}$
We rearrange $q_{i}^{\prime} s$ such that $p_{1}=q_{1}$
Now cancelling p_{1} and q_{1} in (iv), we get
 q_{s}

We continue this process till all pi's are exhausted.
Also ,as $r<s$, we are therefore left only with
$1=q_{r+1} \cdot q_{r+2}$ q_{r+s}

But it is not possible as qi's are primes.
Therefore , r cannot be less than S.
Similarly , we can show that S cannot be less than r.Hence $r=s$ and,
$\mathrm{p}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}}, \forall \quad \mathrm{i}$
This suggests that the representation is unique
If n is not divisible by any prime $\leq \sqrt{n}$, then prove that n is prime
Suppose if possible n is not a prime.
Then, it is a composite number.
Therefore, by Fundamental theorem of arithmetic, n can be written as,
$\mathrm{n}=\mathrm{p}_{1}{ }^{q_{1}}$ \qquad . $\mathrm{Pr}^{9} \mathrm{r}^{\prime}$
(where pi's are primes and qis ≥ 1 are ntegers)
$n \geq p_{1} . p_{2}$
Since it is given that n isn't divisible by any prime $\leq \sqrt{\mathrm{n}}$ i.e , n is divisible by primes $>\sqrt{n}$, therefore we have;
$P_{1}\left|n, P_{2}\right| n=p_{1}, p_{2}>\sqrt{n}$

$$
\begin{equation*}
=\mathrm{p}_{1} \mathrm{p}_{2}>\sqrt{n} \sqrt{n} \tag{ii}
\end{equation*}
$$

From (i) and (ii) ,it follows that
$\mathrm{n} \geq \mathrm{p}_{1} \mathrm{p}_{2}>\sqrt{n} \sqrt{n}$ \qquad
$=\mathrm{n} \geq \sqrt{n} \sqrt{n}$
Which is impossible
Hence, n must be n prime number.

Hence Proved

