M.S c Mathematics – SEM 2 Number Theory CC-10 Unit 2

E-content –By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna

Content-Fundamental Theorem of Arithmetic or Uniqueness theorem

Statement: Every Postive integer n>1 can be expressed as the product of prime factors uniquely.

Proof: Let n>1 be an integer. If n is a prime number, then we have nothing to do to prove the theorem.

If n is a composite number, then there exists a prime p, such that for some integer n, we have ;

n=p_1 n_____(i)

If n is a prime number, then n is expressible as the product of prime 1 Factors by equation (i)

But if n is a composite number, then there exists a prime number p $^{\ \ 2}$ such that

 $n_1 = p_2 n_2$, For some integers n_2(ii)

Therefore from (i)

n=p_n 1_1

n=p₁p₂n₂.....(using (ii).....(iii)

If n is a prime number , then n is expressed by (iii) as the product of prime Factors. But if n is a composite number, then we continue the process .

Since , n > n > n > n > 2,

the process cannot continue infinitely.

Therefore, after finite number of steps, we get

^{n=p}1^p2.....^pk'

where all p_i 's are prime numbers.

Now, suppose if possible n can be represented as a product of primes in two ways as follows,

 $n = p_1 \cdot p_2 \dots p_r = q_1 \cdot q_2 \dots q_s r^{<s}$(iv)

where p_i and q_i are primes in the ascending order i.e

$p_1 \leq p_2 \leq \dots \leq p_r$

$q_1 \leq q_2 \leq \cdots \leq q_s$

Since $p_1 | q_1 q_2 \dots q_s$, there exist some primes q_k such that $p_1 | q_k$.

But p_1 and q_k are both primes

Therefore $p_1 = q_k$

We rearrange q_i 's such that $p_1=q_1$

Now cancelling p_1 and q_1 in (iv) ,we get

 $P_2 P_3 P_4 ... q_s$

We continue this process till all pi's are exhausted.

Also ,as r<s ,we are therefore left only with

 $1 {=} q_{r+1}. q_{r+2}.....q_{r+s}$

But it is not possible as qi's are primes.

Therefore, r cannot be less than S.

Similarly ,we can show that S cannot be less than r .Hence r=s and ,

p_i=q_i ,∀ i

This suggests that the representation is unique

If n is not divisible by any prime $\leq \sqrt{n}$, then prove that n is prime

Suppose if possible n is not a prime.

Then, it is a composite number.

Therefore, by Fundamental theorem of arithmetic, n can be written as,

 $n=p_1^{q_1}....P_{r'}^{q_{r'}}$

(where p_i 's are primes and q_i 's ≥ 1 are ntegers)

 $n\geq p_1\,.p_2\,....(i)$

Since it is given that n isn't divisible by any prime $\leq \sqrt{n}$ i.e , n is divisible by primes $>\sqrt{n}$, therefore we have ;

 $P_1|n$, $P_2|n=p_1, p_2>\sqrt{n}$

 $=p_1p_2 > \sqrt{n\sqrt{n}}$ (ii)

From (i) and (ii) ,it follows that

 $\mathsf{n} \ge \mathsf{p}_1 \mathsf{p}_2 > \sqrt{n} \sqrt{n} \dots$

$$=$$
 n $\geq \sqrt{n}\sqrt{n}$

Which is impossible

Hence , n must be n prime number.

Hence Proved